Suppr超能文献

使用 Arduino 控制的微流控 3D 打印平台在 96 孔板中模拟细胞培养中的临床压力波形。

Emulating clinical pressure waveforms in cell culture using an Arduino-controlled millifluidic 3D-printed platform for 96-well plates.

机构信息

Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.

出版信息

Lab Chip. 2023 Feb 14;23(4):793-802. doi: 10.1039/d2lc00970f.

Abstract

High blood pressure is the primary risk factor for heart disease, the leading cause of death globally. Despite this, current methods to replicate physiological pressures remain limited in sophistication and throughput. Single-chamber exposure systems allow for only one pressure condition to be studied at a time and the application of dynamic pressure waveforms is currently limited to simple sine, triangular, or square waves. Here, we introduce a high-throughput hydrostatic pressure exposure system for 96-well plates. The platform can deliver a fully-customizable pressure waveform to each column of the plate, for a total of 12 simultaneous conditions. Using clinical waveform data, we are able to replicate real patients' blood pressures as well as other medically-relevant pressures within the body and have assembled a small patient-derived waveform library of some key physiological locations. As a proof of concept, human umbilical vein endothelial cells (HUVECs) survived and proliferated for 3 days under a wide range of static and dynamic physiologic pressures ranging from 10 mm Hg to 400 mm Hg. Interestingly, pathologic and supraphysiologic pressure exposures did not inhibit cell proliferation. By integrating with, rather than replacing, ubiquitous lab cultureware it is our hope that this device will facilitate the incorporation of hydrostatic pressure into standard cell culture practice.

摘要

高血压是心脏病的主要风险因素,也是全球范围内的主要死亡原因。尽管如此,目前复制生理压力的方法在复杂性和通量方面仍然有限。单腔室暴露系统一次只能研究一种压力条件,并且目前动态压力波形的应用仅限于简单的正弦波、三角波或方波。在这里,我们引入了一种用于 96 孔板的高通量静水压力暴露系统。该平台可以为板的每一列提供完全可定制的压力波形,总共可以同时进行 12 种条件。使用临床波形数据,我们能够复制真实患者的血压以及体内其他与医学相关的压力,并组装了一些关键生理部位的小型患者衍生波形库。作为概念验证,人脐静脉内皮细胞(HUVEC)在从 10mmHg 到 400mmHg 的广泛静态和动态生理压力下存活并增殖了 3 天。有趣的是,病理和超生理压力暴露并没有抑制细胞增殖。通过与无处不在的实验室培养器皿集成,而不是替代它们,我们希望该设备将促进将静水压力纳入标准细胞培养实践。

相似文献

4
A 3D-Printed Oxygen Control Insert for a 24-Well Plate.用于24孔板的3D打印氧气控制插件
PLoS One. 2015 Sep 11;10(9):e0137631. doi: 10.1371/journal.pone.0137631. eCollection 2015.
7
96-Well Oxygen Control Using a 3D-Printed Device.使用 3D 打印设备控制 96 孔板中的氧气。
Anal Chem. 2021 Feb 2;93(4):2570-2577. doi: 10.1021/acs.analchem.0c04627. Epub 2021 Jan 18.

本文引用的文献

3
96-Well Oxygen Control Using a 3D-Printed Device.使用 3D 打印设备控制 96 孔板中的氧气。
Anal Chem. 2021 Feb 2;93(4):2570-2577. doi: 10.1021/acs.analchem.0c04627. Epub 2021 Jan 18.
5
Regulation of Cell Behavior by Hydrostatic Pressure.流体静压力对细胞行为的调节
Appl Mech Rev. 2019 Jul;71(4):0408031-4080313. doi: 10.1115/1.4043947. Epub 2019 Jul 23.
6
Anatomically based simulation of hepatic perfusion in the human liver.基于解剖结构的人体肝脏血流灌注模拟。
Int J Numer Method Biomed Eng. 2019 Sep;35(9):e3229. doi: 10.1002/cnm.3229. Epub 2019 Jul 31.
7
All-in-one automated microfluidics control system.一体化自动化微流控控制系统。
HardwareX. 2019 Apr;5. doi: 10.1016/j.ohx.2019.e00063. Epub 2019 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验