Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China.
College of Engineering, University of Georgia, Athens, GA, 30602, USA.
Small Methods. 2023 Apr;7(4):e2201427. doi: 10.1002/smtd.202201427. Epub 2023 Feb 2.
The ability to precisely regulate the size of a nanogap is essential for establishing high-yield molecular junctions, and it is crucial for the control of optical signals in extreme optics. Although remarkable strategies for the fabrication of nanogaps are proposed, wafer-compatible nanogaps with freely adjustable gap sizes are not yet available. Herein, two approaches for constructing in situ adjustable metal gaps are proposed which allow Ångstrom modulation resolution by employing either a lateral expandable piezoelectric sheet or a stretchable membrane. These in situ adjustable nanogaps are further developed into in-plane molecular break junctions, in which the gaps can be repeatedly closed and opened thousands of times with self-assembled molecules. The conductance of the single 1,4-benzenediamine (BDA) and the BDA molecular dimer is successfully determined using the proposed strategy. The measured conductance agreeing well with the data by employing another well-established scanning tunneling microscopy break junction technique provides insight into the formation of molecule dimer via hydrogen bond at single molecule level. The wafer-compatible nanogaps and in-plane dynamical break-junctions provide a potential approach to fabricate highly compacted devices using a single molecule as a building block and supply a promising in-plane technique to address the dynamical properties of single molecules.
精确调控纳米间隙大小的能力对于建立高产分子结至关重要,对于极端光学中的光学信号控制也至关重要。尽管已经提出了用于制造纳米间隙的出色策略,但仍然没有可与晶圆兼容且间隙尺寸可自由调节的纳米间隙。本文提出了两种构建原位可调金属间隙的方法,通过使用横向可扩展的压电片或可拉伸膜,可以实现 Ångstrom 调节分辨率。这些原位可调纳米间隙进一步发展为平面分子断裂结,其中间隙可以使用自组装分子数千次重复关闭和打开。使用所提出的策略成功确定了单个 1,4-苯二胺(BDA)和 BDA 分子二聚体的电导。通过采用另一种成熟的扫描隧道显微镜断裂结技术测量的电导与数据吻合良好,这为通过单个分子水平的氢键形成提供了对分子二聚体形成的深入了解。晶圆兼容的纳米间隙和平面动力学断裂结为使用单个分子作为构建块制造高度紧凑的器件提供了一种潜在方法,并为解决单个分子的动力学特性提供了一种有前途的平面技术。