Suppr超能文献

TCGAN:一种用于PET合成CT的变压器增强型生成对抗网络。

TCGAN: a transformer-enhanced GAN for PET synthetic CT.

作者信息

Li Jitao, Qu Zongjin, Yang Yue, Zhang Fuchun, Li Meng, Hu Shunbo

机构信息

College of Information Science and Engineering, Linyi University, Linyi, 276000, China.

College of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China.

出版信息

Biomed Opt Express. 2022 Oct 24;13(11):6003-6018. doi: 10.1364/BOE.467683. eCollection 2022 Nov 1.

Abstract

Multimodal medical images can be used in a multifaceted approach to resolve a wide range of medical diagnostic problems. However, these images are generally difficult to obtain due to various limitations, such as cost of capture and patient safety. Medical image synthesis is used in various tasks to obtain better results. Recently, various studies have attempted to use generative adversarial networks for missing modality image synthesis, making good progress. In this study, we propose a generator based on a combination of transformer network and a convolutional neural network (CNN). The proposed method can combine the advantages of transformers and CNNs to promote a better detail effect. The network is designed for positron emission tomography (PET) to computer tomography synthesis, which can be used for PET attenuation correction. We also experimented on two datasets for magnetic resonance T1- to T2-weighted image synthesis. Based on qualitative and quantitative analyses, our proposed method outperforms the existing methods.

摘要

多模态医学图像可用于多方面的方法来解决广泛的医学诊断问题。然而,由于各种限制,如采集成本和患者安全,这些图像通常难以获得。医学图像合成用于各种任务以获得更好的结果。最近,各种研究尝试使用生成对抗网络进行缺失模态图像合成,并取得了良好进展。在本研究中,我们提出了一种基于变压器网络和卷积神经网络(CNN)组合的生成器。所提出的方法可以结合变压器和CNN的优点,以促进更好的细节效果。该网络专为正电子发射断层扫描(PET)到计算机断层扫描合成而设计,可用于PET衰减校正。我们还在两个数据集上进行了磁共振T1加权到T2加权图像合成的实验。基于定性和定量分析,我们提出的方法优于现有方法。

相似文献

1
TCGAN: a transformer-enhanced GAN for PET synthetic CT.TCGAN:一种用于PET合成CT的变压器增强型生成对抗网络。
Biomed Opt Express. 2022 Oct 24;13(11):6003-6018. doi: 10.1364/BOE.467683. eCollection 2022 Nov 1.
2
ResViT: Residual Vision Transformers for Multimodal Medical Image Synthesis.ResViT:用于多模态医学图像合成的残差视觉转换器。
IEEE Trans Med Imaging. 2022 Oct;41(10):2598-2614. doi: 10.1109/TMI.2022.3167808. Epub 2022 Sep 30.
3
3D multi-modality Transformer-GAN for high-quality PET reconstruction.用于高质量PET重建的3D多模态Transformer-GAN
Med Image Anal. 2024 Jan;91:102983. doi: 10.1016/j.media.2023.102983. Epub 2023 Oct 4.
6
Transformer-Based T2-weighted MRI Synthesis from T1-weighted Images.基于 Transformer 的 T1 加权图像到 T2 加权 MRI 合成。
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:5062-5065. doi: 10.1109/EMBC48229.2022.9871183.
7
From CNNs to GANs for cross-modality medical image estimation.从 CNN 到 GAN,用于跨模态医学图像估计。
Comput Biol Med. 2022 Jul;146:105556. doi: 10.1016/j.compbiomed.2022.105556. Epub 2022 Apr 27.
8
Transformer based Generative Adversarial Network for Liver Segmentation.基于Transformer的生成对抗网络用于肝脏分割
Proc Int Conf Image Anal Process. 2022 May;13374:340-347. doi: 10.1007/978-3-031-13324-4_29. Epub 2022 Aug 4.
9
Deep learning for whole-body medical image generation.深度学习在全身医学图像生成中的应用。
Eur J Nucl Med Mol Imaging. 2021 Nov;48(12):3817-3826. doi: 10.1007/s00259-021-05413-0. Epub 2021 May 22.

引用本文的文献

6
Machine Learning for Medical Image Translation: A Systematic Review.用于医学图像翻译的机器学习:系统综述。
Bioengineering (Basel). 2023 Sep 12;10(9):1078. doi: 10.3390/bioengineering10091078.

本文引用的文献

2
ResViT: Residual Vision Transformers for Multimodal Medical Image Synthesis.ResViT:用于多模态医学图像合成的残差视觉转换器。
IEEE Trans Med Imaging. 2022 Oct;41(10):2598-2614. doi: 10.1109/TMI.2022.3167808. Epub 2022 Sep 30.
8
A GAN-based image synthesis method for skin lesion classification.一种基于生成对抗网络的用于皮肤病变分类的图像合成方法。
Comput Methods Programs Biomed. 2020 Oct;195:105568. doi: 10.1016/j.cmpb.2020.105568. Epub 2020 May 29.
9
Medical Image Synthesis via Deep Learning.基于深度学习的医学图像合成。
Adv Exp Med Biol. 2020;1213:23-44. doi: 10.1007/978-3-030-33128-3_2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验