Suppr超能文献

推进1.5T磁共振成像:通过深度学习超分辨率技术迈向实现3T质量。

Advancing 1.5T MR imaging: toward achieving 3T quality through deep learning super-resolution techniques.

作者信息

Jannat Sk Rahatul, Lynch Kirsten, Fotouhi Maryam, Cen Steve, Choupan Jeiran, Sheikh-Bahaei Nasim, Pandey Gaurav, Varghese Bino A

机构信息

Department of Radiology, University of Southern California, Los Angeles, CA, United States.

Department of Neurology, University of Southern California, Los Angeles, CA, United States.

出版信息

Front Hum Neurosci. 2025 Jun 18;19:1532395. doi: 10.3389/fnhum.2025.1532395. eCollection 2025.

Abstract

INTRODUCTION

A 3T MRI scanner delivers enhanced image quality and SNR, minimizing artifacts to provide superior high-resolution brain images compared to a 1.5T MRI. Thus, making it vitally important for diagnosing complex neurological conditions. However, its higher cost of acquisition and operation, increased sensitivity to image distortions, greater noise levels, and limited accessibility in many healthcare settings present notable challenges. These factors impact heterogeneity in MRI neuroimaging data on account of the uneven distribution of 1.5T and 3T MRI scanners across healthcare institutions.

METHODS

In our study, we investigated the efficacy of three deep learning-based super-resolution techniques to enhance 1.5T MRI images, aiming to achieve quality analogous to 3T scans. These synthetic and "upgraded" 1.5T images were compared and assessed against their 3T counterparts using a range of image quality assessment metrics. Specifically, we employed metrics such as the Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Learned Perceptual Image Patch Similarity (LPIPS), and Intensity Differences in Pixels (IDP) to evaluate the similitude and visual quality of the enhanced images.

RESULTS

According to our experimental results it has been exhibited that among the three evaluated deep learning-based super-resolution techniques, the Transformer Enhanced Generative Adversarial Network (TCGAN) significantly outperformed the others. To reduce pixel differences, enhance image sharpness, and preserve essential anatomical details TCGAN performed efficaciously.

DISCUSSION

This approach presents TCGAN offers a cost-effective and widely accessible alternative for generating high-quality images without the need for expensive, high-field MRI scans and leads to inconsistencies and complicate data comparison and harmonization challenges across studies utilizing various scanners.

摘要

引言

与1.5T磁共振成像(MRI)相比,3T MRI扫描仪可提供更高的图像质量和信噪比,将伪影降至最低,以提供卓越的高分辨率脑部图像。因此,这对于诊断复杂的神经系统疾病至关重要。然而,其更高的购置和运行成本、对图像失真的敏感性增加、更高的噪声水平以及在许多医疗机构中有限的可及性带来了显著挑战。由于1.5T和3T MRI扫描仪在医疗机构中的分布不均,这些因素影响了MRI神经影像数据的异质性。

方法

在我们的研究中,我们研究了三种基于深度学习的超分辨率技术增强1.5T MRI图像的效果,旨在实现与3T扫描类似的质量。使用一系列图像质量评估指标,将这些合成的“升级”1.5T图像与其3T对应图像进行比较和评估。具体而言,我们采用了结构相似性指数测量(SSIM)、峰值信噪比(PSNR)、学习感知图像块相似性(LPIPS)和像素强度差异(IDP)等指标来评估增强图像的相似性和视觉质量。

结果

根据我们的实验结果表明,在评估的三种基于深度学习的超分辨率技术中,Transformer增强生成对抗网络(TCGAN)明显优于其他技术。为了减少像素差异、增强图像清晰度并保留重要的解剖细节,TCGAN表现有效。

讨论

这种方法提出了TCGAN,它为生成高质量图像提供了一种经济高效且广泛可用的替代方案,无需昂贵的高场MRI扫描,并且导致使用各种扫描仪的研究之间的数据比较和协调挑战不一致且复杂化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4b/12213716/ab25f97e39cc/fnhum-19-1532395-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验