Abdulmalik Sama, Gallo Jack, Nip Jonathan, Katebifar Sara, Arul Michael, Lebaschi Amir, Munch Lucas N, Bartly Jenna M, Choudhary Shilpa, Kalajzic Ivo, Banasavadi-Siddegowdae Yeshavanth Kumar, Nukavarapu Syam P, Kumbar Sangamesh G
Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA.
Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
Bioact Mater. 2023 Jan 20;25:42-60. doi: 10.1016/j.bioactmat.2023.01.013. eCollection 2023 Jul.
Tendon and ligament injuries are the most common musculoskeletal injuries, which not only impact the quality of life but result in a massive economic burden. Surgical interventions for tendon/ligament injuries utilize biological and/or engineered grafts to reconstruct damaged tissue, but these have limitations. Engineered matrices confer superior physicochemical properties over biological grafts but lack desirable bioactivity to promote tissue healing. While incorporating drugs can enhance bioactivity, large matrix surface areas and hydrophobicity can lead to uncontrolled burst release and/or incomplete release due to binding. To overcome these limitations, we evaluated the delivery of a peptide growth factor (exendin-4; Ex-4) using an enhanced nanofiber matrix in a tendon injury model. To overcome drug surface binding due to matrix hydrophobicity of poly(caprolactone) (PCL)-which would be expected to enhance cell-material interactions-we blended PCL and cellulose acetate (CA) and electrospun nanofiber matrices with fiber diameters ranging from 600 to 1000 nm. To avoid burst release and protect the drug, we encapsulated Ex-4 in the open lumen of halloysite nanotubes (HNTs), sealed the HNT tube endings with a polymer blend, and mixed Ex-4-loaded HNTs into the polymer mixture before electrospinning. This reduced burst release from ∼75% to ∼40%, but did not alter matrix morphology, fiber diameter, or tensile properties. We evaluated the bioactivity of the Ex-4 nanofiber formulation by culturing human mesenchymal stem cells (hMSCs) on matrix surfaces for 21 days and measuring tenogenic differentiation, compared with nanofiber matrices in basal media alone. Strikingly, we observed that Ex-4 nanofiber matrices accelerated the hMSC proliferation rate and elevated levels of sulfated glycosaminoglycan, tendon-related genes (Scx, Mkx, and Tnmd), and ECM-related genes (Col-I, Col-III, and Dcn), compared to control. We then assessed the safety and efficacy of Ex-4 nanofiber matrices in a full-thickness rat Achilles tendon defect with histology, marker expression, functional walking track analysis, and mechanical testing. Our analysis confirmed that Ex-4 nanofiber matrices enhanced tendon healing and reduced fibrocartilage formation versus nanofiber matrices alone. These findings implicate Ex-4 as a potentially valuable tool for tendon tissue engineering.
肌腱和韧带损伤是最常见的肌肉骨骼损伤,不仅会影响生活质量,还会造成巨大的经济负担。针对肌腱/韧带损伤的外科手术干预利用生物和/或工程移植物来重建受损组织,但这些方法存在局限性。工程化基质比生物移植物具有更优越的物理化学性质,但缺乏促进组织愈合所需的生物活性。虽然加入药物可以增强生物活性,但由于结合作用,大的基质表面积和疏水性会导致药物不受控制的突释和/或不完全释放。为了克服这些局限性,我们在肌腱损伤模型中评估了使用增强型纳米纤维基质递送一种肽生长因子(艾塞那肽-4;Ex-4)的效果。为了克服由于聚己内酯(PCL)的基质疏水性导致的药物表面结合问题(预计这会增强细胞与材料的相互作用),我们将PCL和醋酸纤维素(CA)混合,并静电纺丝制备了纤维直径在600至1000纳米之间的纳米纤维基质。为了避免突释并保护药物,我们将Ex-4包裹在埃洛石纳米管(HNTs)的开放管腔中,用聚合物混合物密封HNT管的末端,并在静电纺丝前将负载Ex-4的HNTs混入聚合物混合物中。这将突释率从约75%降低到了约40%,但没有改变基质形态、纤维直径或拉伸性能。我们通过在基质表面培养人间充质干细胞(hMSCs)21天并测量成腱分化,与仅在基础培养基中的纳米纤维基质相比,评估了Ex-4纳米纤维制剂的生物活性。令人惊讶的是,我们观察到与对照组相比,Ex-4纳米纤维基质加速了hMSC的增殖速率,并提高了硫酸化糖胺聚糖、肌腱相关基因(Scx、Mkx和Tnmd)以及细胞外基质相关基因(Col-I、Col-III和Dcn)的水平。然后,我们通过组织学、标志物表达、功能行走轨迹分析和力学测试,评估了Ex-4纳米纤维基质在大鼠跟腱全层缺损中的安全性和有效性。我们的分析证实,与单独的纳米纤维基质相比,Ex-4纳米纤维基质增强了肌腱愈合并减少了纤维软骨形成。这些发现表明Ex-4是肌腱组织工程中一种潜在有价值的工具。