Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe, Argentina.
Department of Crop Sciences, University of Illinois, 1201 West Gregory Drive, Edward R. Madigan Laboratory #289, Urbana, IL, 61801, USA.
BMC Genomics. 2023 Feb 6;24(1):64. doi: 10.1186/s12864-022-08995-7.
C photosynthesis is a mechanism that plants have evolved to reduce the rate of photorespiration during the carbon fixation process. The C pathway allows plants to adapt to high temperatures and light while more efficiently using resources, such as water and nitrogen. Despite decades of studies, the evolution of the C pathway from a C ancestor remains a biological enigma. Interestingly, species with C-C intermediates photosynthesis are usually found closely related to the C lineages. Indeed, current models indicate that the assembly of C photosynthesis was a gradual process that included the relocalization of photorespiratory enzymes, and the establishment of intermediate photosynthesis subtypes. More than a third of the C origins occurred within the grass family (Poaceae). In particular, the Otachyriinae subtribe (Paspaleae tribe) includes 35 American species from C, C, and intermediates taxa making it an interesting lineage to answer questions about the evolution of photosynthesis.
To explore the molecular mechanisms that underpin the evolution of C photosynthesis, the transcriptomic dynamics along four different leaf segments, that capture different stages of development, were compared among Otachyriinae non-model species. For this, leaf transcriptomes were sequenced, de novo assembled, and annotated. Gene expression patterns of key pathways along the leaf segments showed distinct differences between photosynthetic subtypes. In addition, genes associated with photorespiration and the C cycle were differentially expressed between C and C species, but their expression patterns were well preserved throughout leaf development.
New, high-confidence, protein-coding leaf transcriptomes were generated using high-throughput short-read sequencing. These transcriptomes expand what is currently known about gene expression in leaves of non-model grass species. We found conserved expression patterns of C cycle and photorespiratory genes among C, intermediate, and C species, suggesting a prerequisite for the evolution of C photosynthesis. This dataset represents a valuable contribution to the existing genomic resources and provides new tools for future investigation of photosynthesis evolution.
C 光合作用是植物在固碳过程中进化出的一种机制,可降低光呼吸速率。C 途径使植物能够适应高温和强光,同时更有效地利用资源,如水分和氮。尽管经过几十年的研究,从 C 祖先到 C 途径的进化仍然是一个生物学之谜。有趣的是,具有 C-C 中间光合作用的物种通常与 C 谱系密切相关。实际上,目前的模型表明,C 光合作用的组装是一个渐进的过程,包括光呼吸酶的重新定位和中间光合作用亚型的建立。超过三分之一的 C 起源发生在禾本科(Poaceae)内。特别是,Otachyriinae 亚科(Paspaleae 族)包括来自 C、C 和中间类群的 35 种美洲物种,使其成为回答光合作用进化问题的有趣谱系。
为了探索支持 C 光合作用进化的分子机制,比较了 Otachyriinae 非模式物种的四个不同叶片段的转录组动态,这些叶片段分别代表了不同的发育阶段。为此,对叶片转录组进行了测序、从头组装和注释。沿叶片段的关键途径的基因表达模式在不同的光合作用亚型之间表现出明显差异。此外,与光呼吸和 C 循环相关的基因在 C 和 C 物种之间的表达模式存在差异,但在整个叶片发育过程中它们的表达模式得到了很好的保留。
使用高通量短读测序生成了新的、高可信度的叶片蛋白质编码转录组。这些转录组扩展了我们目前对非模式禾本科物种叶片中基因表达的了解。我们发现 C 循环和光呼吸基因在 C、中间和 C 物种中的表达模式保守,这表明 C 光合作用进化的先决条件。该数据集代表了对现有基因组资源的有价值贡献,并为未来光合作用进化的研究提供了新工具。