College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
Int J Pharm. 2023 Apr 5;636:122647. doi: 10.1016/j.ijpharm.2023.122647. Epub 2023 Feb 6.
The objective of the present study was to fabricate microneedles for delivering lipophilic active ingredients (APIs) using digital light processing (DLP) printing technology and quality by design (QbD) supplemented by artificial intelligence (AI) algorithms. In the present study, dissolvable microneedle (MN) patches using ibuprofen (IBU) as a model drug were successfully fabricated with DLP printing technology at ∼ 750 μm height, ∼250 μm base diameter, and tip with radius of curvature (RoC) of ∼ 15 μm. MN patches were comprised of IBU, photoinitiator, Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP), polyethylene glycol dimethacrylate (PEGDAMA)550 and distilled water and were developed using the QbD optimization approach. Optimization of print fidelity and needle morphology were achieved using AI implementing a semi-supervised machine learning approach. Mechanical strength tests demonstrated that IBU MNs formed pores both on Parafilm M® and human cadaver skin. IBU-MNs consisting of 0.23 %w/v and 0.49 %w/v LAP with 10 %w/v water showed ∼ 2 mg/cm sustained drug permeation at 72 h in skin permeation experiments with flux of ∼ 40 μg/cm/h. Pharmacokinetic studies in rats displayed biphasic rapid first-order absorption with sustained zero-order input of Ko = 150ug/hr, AUC = 62812.02 ± 11128.39 ng/ml*h, Tmax = 2.66 ± 1.12 h, and Cmax = 3717.43 ± 782.25 ng/ml (using 0.23 %w/v LAP IBU MN patch). An in vitro in vivo relation (IVIVR) was conducted identifying a polynomial relationship between patch release and fraction absorbed in vivo. This study demonstrates fabrication of dissolvable DLP-printed microneedle patches for lipophilic API delivery with biphasic rapid first-order and sustained zero-order release.
本研究旨在使用数字光处理(DLP)打印技术和基于人工智能(AI)算法的质量源于设计(QbD)来制造用于递送亲脂性活性成分(APIs)的微针。在本研究中,成功使用 DLP 打印技术制造了布洛芬(IBU)作为模型药物的可溶解微针(MN)贴片,其高度约为 750μm,基底直径约为 250μm,尖端曲率半径(RoC)约为 15μm。MN 贴片由 IBU、光引发剂、Lithium phenyl(2,4,6-trimethylbenzoyl)phosphinate(LAP)、聚乙二醇二甲基丙烯酸酯(PEGDAMA550)和蒸馏水组成,并采用 QbD 优化方法进行开发。使用 AI 实施半监督机器学习方法,实现了打印保真度和针形态的优化。机械强度测试表明,IBU-MNs 在 Parafilm M®和人体尸体皮肤上都形成了孔。由 0.23%w/v 和 0.49%w/v LAP 与 10%w/v 水组成的 IBU-MNs 在皮肤渗透实验中显示出约 2mg/cm 的持续药物渗透,在 72 小时时通量约为 40μg/cm/h。在大鼠的药代动力学研究中,快速呈现两相一阶吸收,持续零阶输入 Ko=150ug/hr,AUC=62812.02±11128.39ng/ml*h,Tmax=2.66±1.12h,Cmax=3717.43±782.25ng/ml(使用 0.23%w/v LAP IBU MN 贴片)。进行了体外体内关系(IVIVR)研究,确定了贴片释放与体内吸收分数之间的多项式关系。本研究证明了使用 DLP 打印技术制造用于亲脂性 API 递送的可溶解微针贴片的制造,具有两相快速一阶和持续零阶释放。