Lauzon D, Vallée-Bélisle A
Laboratoire de Biosenseurs & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec, Canada.
Nat Chem. 2023 Apr;15(4):458-467. doi: 10.1038/s41557-022-01127-4. Epub 2023 Feb 9.
Over half of all the natural nanomachines in living organisms are multimeric and likely exploit the self-assembly of their components to provide functional benefits. However, the advantages and disadvantages of building nanosystems using multiple molecular components remain relatively unexplored at the thermodynamic, kinetic and functional levels. In this study we used theory and a simple DNA-based model that forms the same nanostructures with different numbers of components to advance our knowledge in this area. Despite its lower assembly rate, we found that a system built with three components may undergo a more cooperative assembly transition from less preorganized components, which facilitates the emergence of functionalities. Using simple variations of its components, we also found that trimeric nanosystems display a much higher level of programmability than their dimeric counterparts because they can assemble with various levels of cooperativity, self-inhibition and time-dependent properties. We show here how two simple strategies (for example, cutting and adding components) can be employed to efficiently programme the regulatory function of a more complex, artificially selected, RNA-cleaving catalytic nanosystem.
生物体中超过一半的天然纳米机器是多聚体,并且可能利用其组件的自组装来提供功能优势。然而,在热力学、动力学和功能层面,使用多个分子组件构建纳米系统的优缺点仍相对未被探索。在本研究中,我们运用理论和一个基于DNA的简单模型,该模型能以不同数量的组件形成相同的纳米结构,以增进我们在这一领域的知识。尽管其组装速率较低,但我们发现,由三个组件构建的系统可能会经历一个从较少预组织组件而来的更协同的组装转变,这有利于功能的出现。通过对其组件进行简单变化,我们还发现三聚体纳米系统比其二聚体对应物显示出更高水平的可编程性,因为它们可以以各种协同水平、自我抑制和时间依赖性特性进行组装。我们在此展示了如何采用两种简单策略(例如,切割和添加组件)来有效地对一个更复杂的、人工选择的RNA切割催化纳米系统的调节功能进行编程。