一年的大流行:来自 Twitter 的幸福感数据的水平、变化和有效性。来自十个国家的证据。
A year of pandemic: Levels, changes and validity of well-being data from Twitter. Evidence from ten countries.
机构信息
Research Division, Institut national de la statistique et des études économiques du Grand-Duché du Luxembourg, Luxembourg, Luxembourg.
School of Economics, College of Business and Economics, University of Johannesburg, Johannesburg, South Africa.
出版信息
PLoS One. 2023 Feb 10;18(2):e0275028. doi: 10.1371/journal.pone.0275028. eCollection 2023.
We use daily happiness scores (Gross National Happiness (GNH)) to illustrate how happiness changed throughout 2020 in ten countries across Europe and the Southern hemisphere. More frequently and regularly available than survey data, the GNH reveals how happiness sharply declined at the onset of the pandemic and lockdown, quickly recovered, and then trended downward throughout much of the year in Europe. GNH is derived by applying sentiment and emotion analysis-based on Natural Language Processing using machine learning algorithms-to Twitter posts (tweets). Using a similar approach, we generate another 11 variables: eight emotions and three new context-specific variables, in particular: trust in national institutions, sadness in relation to loneliness, and fear concerning the economy. Given the novelty of the dataset, we use multiple methods to assess validity. We also assess the correlates of GNH. The results indicate that GNH is negatively correlated with new COVID-19 cases, containment policies, and disgust and positively correlated with staying at home, surprise, and generalised trust. Altogether the analyses indicate tools based on Big Data, such as the GNH, offer relevant data that often fill information gaps and can valuably supplement traditional tools. In this case, the GNH results suggest that both the severity of the pandemic and containment policies negatively correlated with happiness.
我们使用每日幸福感得分(国民幸福总值(GNH))来说明 2020 年在欧洲和南半球的十个国家幸福感是如何变化的。GNH 比调查数据更频繁、更定期地提供,它揭示了幸福感在大流行和封锁开始时急剧下降,迅速恢复,然后在欧洲的大部分时间里呈下降趋势。GNH 是通过应用基于情感和情绪分析的自然语言处理技术,使用机器学习算法对 Twitter 帖子(推文)进行分析得出的。使用类似的方法,我们生成了另外 11 个变量:八种情绪和三个新的特定上下文变量,特别是:对国家机构的信任、与孤独有关的悲伤和对经济的恐惧。考虑到数据集的新颖性,我们使用多种方法来评估有效性。我们还评估了 GNH 的相关性。结果表明,GNH 与新的 COVID-19 病例、遏制政策以及厌恶感呈负相关,与呆在家里、惊喜和普遍信任呈正相关。总的来说,这些分析表明,基于大数据的工具,如 GNH,提供了相关数据,这些数据通常填补了信息空白,并可以有价值地补充传统工具。在这种情况下,GNH 的结果表明,大流行的严重程度和遏制政策与幸福感呈负相关。
相似文献
J Med Internet Res. 2019-8-26
Int J Environ Res Public Health. 2022-6-24
J Med Internet Res. 2021-4-30
J Med Internet Res. 2020-11-25
引用本文的文献
Proc Natl Acad Sci U S A. 2023-5-9
Appl Res Qual Life. 2023
本文引用的文献
Int J Community Wellbeing. 2021
J Public Econ. 2020-12
Front Psychol. 2020-10-2
J Affect Disord. 2020-8-8