Suppr超能文献

女性乳腺癌后发生第二非乳腺原发癌的风险:系统评价和荟萃分析。

Risks of second non-breast primaries following breast cancer in women: a systematic review and meta-analysis.

机构信息

Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB1 8RN, UK.

出版信息

Breast Cancer Res. 2023 Feb 10;25(1):18. doi: 10.1186/s13058-023-01610-x.

Abstract

BACKGROUND

Second primary cancer incidence is rising among breast cancer survivors. We examined the risks of non-breast second primaries, in combination and at specific cancer sites, through a systematic review and meta-analysis.

METHODS

We conducted a systematic search of PubMed, Embase, and Web of Science, seeking studies published by March 2022. We included studies that reported standardized incidence ratios (SIRs), with associated standard errors, assessing the combined risk of second non-breast primaries following breast cancer. We performed meta-analyses of combined second primary risks, stratifying by age, follow-up duration, and geographic region. We also assessed second primary risks at several specific sites, stratifying by age. The inverse variance method with DerSimonian-Laird estimators was used in all meta-analyses, assuming a random-effects model. Associated biases and study quality were evaluated using the Newcastle-Ottawa scale.

RESULTS

One prospective and twenty-seven retrospective cohort studies were identified. SIRs for second non-breast primaries combined ranged from 0.84 to 1.84. The summary SIR estimate was 1.24 (95% CI 1.14-1.36, I: 99%). This varied by age: the estimate was 1.59 (95% CI 1.36-1.85) when breast cancer was diagnosed before age 50, which was significantly higher than in women first diagnosed at 50 or over (SIR: 1.13, 95% CI 1.01-1.36, p for difference: < 0.001). SPC risks were also significantly higher when based on Asian, rather than European, registries (Asia-SIR: 1.47, 95% CI 1.29-1.67. Europe-SIR: 1.16, 95% CI 1.04-1.28). There were significantly increased risks of second thyroid (SIR: 1.89, 95% CI 1.49-2.38), corpus uteri (SIR: 1.84, 95% CI 1.53-2.23), ovary (SIR: 1.53, 95% CI 1.35-1.73), kidney (SIR: 1.43, 95% CI 1.17-1.73), oesophagus (SIR: 1.39, 95% CI 1.26-1.55), skin (melanoma) (SIR: 1.34, 95% CI 1.18-1.52), blood (leukaemia) (SIR: 1.30, 95% CI 1.17-1.45), lung (SIR: 1.25, 95% CI 1.03-1.51), stomach (SIR: 1.23, 95% CI 1.12-1.36) and bladder (SIR: 1.15, 95% CI 1.05-1.26) primaries.

CONCLUSIONS

Breast cancer survivors are at significantly increased risk of second primaries at many sites. Risks are higher for those diagnosed with breast cancer before age 50 and in Asian breast cancer survivors compared to European breast cancer survivors. This study is limited by a lack of data on potentially confounding variables. The conclusions may inform clinical management decisions following breast cancer, although specific clinical recommendations lie outside the scope of this review.

摘要

背景

乳腺癌幸存者的第二原发癌发病率正在上升。我们通过系统评价和荟萃分析研究了非乳腺癌第二原发癌的风险,以及在特定癌症部位的联合风险。

方法

我们对 PubMed、Embase 和 Web of Science 进行了系统搜索,以寻找截至 2022 年 3 月发表的研究。我们纳入了报告标准化发病比(SIRs)及其相关标准误差的研究,这些研究评估了乳腺癌后第二非乳腺癌原发癌的联合风险。我们对第二原发癌风险进行了荟萃分析,按年龄、随访时间和地理区域进行分层。我们还按年龄对特定部位的第二原发癌风险进行了评估。所有荟萃分析均采用逆方差法和 DerSimonian-Laird 估计值,假设为随机效应模型。使用纽卡斯尔-渥太华量表评估相关偏倚和研究质量。

结果

确定了一项前瞻性研究和 27 项回顾性队列研究。第二非乳腺癌原发癌的 SIRs 范围为 0.84 至 1.84。综合 SIR 估计值为 1.24(95%CI 1.14-1.36,I:99%)。这因年龄而异:当乳腺癌在 50 岁之前诊断时,估计值为 1.59(95%CI 1.36-1.85),明显高于 50 岁或以上诊断的女性(SIR:1.13,95%CI 1.01-1.36,p 差异:<0.001)。基于亚洲而不是欧洲登记处的 SPC 风险也明显更高(亚洲-SIR:1.47,95%CI 1.29-1.67;欧洲-SIR:1.16,95%CI 1.04-1.28)。甲状腺(SIR:1.89,95%CI 1.49-2.38)、子宫体(SIR:1.84,95%CI 1.53-2.23)、卵巢(SIR:1.53,95%CI 1.35-1.73)、肾脏(SIR:1.43,95%CI 1.17-1.73)、食管(SIR:1.39,95%CI 1.26-1.55)、皮肤(黑色素瘤)(SIR:1.34,95%CI 1.18-1.52)、血液(白血病)(SIR:1.30,95%CI 1.17-1.45)、肺(SIR:1.25,95%CI 1.03-1.51)、胃(SIR:1.23,95%CI 1.12-1.36)和膀胱(SIR:1.15,95%CI 1.05-1.26)的原发癌风险显著增加。

结论

乳腺癌幸存者在许多部位发生第二原发癌的风险显著增加。与欧洲乳腺癌幸存者相比,50 岁之前被诊断为乳腺癌的患者和亚洲乳腺癌幸存者的风险更高。本研究受到潜在混杂变量数据缺失的限制。研究结果可能为乳腺癌后临床管理决策提供信息,但具体的临床建议不在本综述范围内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b062/9912682/8b61677b36cd/13058_2023_1610_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验