Suppr超能文献

用于智能多阶段厚涂片和薄涂片图像疟原虫识别的鲁棒图像处理框架

Robust Image Processing Framework for Intelligent Multi-Stage Malaria Parasite Recognition of Thick and Thin Smear Images.

作者信息

Aris Thaqifah Ahmad, Nasir Aimi Salihah Abdul, Mustafa Wan Azani, Mashor Mohd Yusoff, Haryanto Edy Victor, Mohamed Zeehaida

机构信息

Faculty of Electrical Engineering and Technology, Universiti Malaysia Perlis, UniCITI Alam Campus, Sungai Chuchuh, Padang Besar 02100, Malaysia.

Advanced Computing (AdvCOMP), Centre of Excellence, Universiti Malaysia Perlis, Pauh Putra Campus, Arau 02600, Malaysia.

出版信息

Diagnostics (Basel). 2023 Jan 31;13(3):511. doi: 10.3390/diagnostics13030511.

Abstract

Malaria is a pressing medical issue in tropical and subtropical regions. Currently, the manual microscopic examination remains the gold standard malaria diagnosis method. Nevertheless, this procedure required highly skilled lab technicians to prepare and examine the slides. Therefore, a framework encompassing image processing and machine learning is proposed due to inconsistencies in manual inspection, counting, and staging. Here, a standardized segmentation framework utilizing thresholding and clustering is developed to segment parasites' stages of and species. Moreover, a multi-stage classifier is designed for recognizing parasite species and staging in both species. Experimental results indicate the effectiveness of segmenting thick smear images based on Phansalkar thresholding garnered an accuracy of 99.86%. The employment of variance and new transferring process for the clustered members, enhanced -means (EKM) clustering has successfully segmented all malaria stages with accuracy and an F1-score of 99.20% and 0.9033, respectively. In addition, the accuracies of parasite detection, species recognition, and staging obtained through a random forest (RF) accounted for 86.89%, 98.82%, and 90.78%, respectively, simultaneously. The proposed framework enables versatile malaria parasite detection and staging with an interactive result, paving the path for future improvements by utilizing the proposed framework on all others malaria species.

摘要

疟疾是热带和亚热带地区一个紧迫的医学问题。目前,手工显微镜检查仍然是疟疾诊断的金标准方法。然而,这个过程需要高技能的实验室技术人员来制备和检查载玻片。因此,由于手工检查、计数和分期存在不一致性,提出了一个包含图像处理和机器学习的框架。在此,开发了一个利用阈值处理和聚类的标准化分割框架,以分割疟原虫的阶段和种类。此外,设计了一个多阶段分类器来识别寄生虫种类并对两种疟原虫进行分期。实验结果表明,基于Phansalkar阈值处理分割厚涂片图像的有效性获得了99.86%的准确率。对聚类成员采用方差和新的转移过程,增强均值(EKM)聚类成功地分割了所有疟疾阶段,准确率和F1分数分别为99.20%和0.9033。此外,通过随机森林(RF)获得的寄生虫检测、种类识别和分期的准确率分别同时为86.89%、98.82%和90.78%。所提出的框架能够以交互式结果实现通用的疟原虫检测和分期,为未来通过在所有其他疟原虫种类上应用所提出的框架进行改进铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dfd/9913904/3789ca322a73/diagnostics-13-00511-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验