Suppr超能文献

使用深度学习对疟疾患者的厚涂片图像进行诊断。

Diagnosing Malaria Patients with and Using Deep Learning for Thick Smear Images.

作者信息

Kassim Yasmin M, Yang Feng, Yu Hang, Maude Richard J, Jaeger Stefan

机构信息

National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.

出版信息

Diagnostics (Basel). 2021 Oct 27;11(11):1994. doi: 10.3390/diagnostics11111994.

Abstract

We propose a new framework, PlasmodiumVF-Net, to analyze thick smear microscopy images for a malaria diagnosis on both image and patient-level. Our framework detects whether a patient is infected, and in case of a malarial infection, reports whether the patient is infected by or . PlasmodiumVF-Net first detects candidates for Plasmodium parasites using a Mask Regional-Convolutional Neural Network (Mask R-CNN), filters out false positives using a ResNet50 classifier, and then follows a new approach to recognize parasite species based on a score obtained from the number of detected patches and their aggregated probabilities for all of the patient images. Reporting a patient-level decision is highly challenging, and therefore reported less often in the literature, due to the small size of detected parasites, the similarity to staining artifacts, the similarity of species in different development stages, and illumination or color variations on patient-level. We use a manually annotated dataset consisting of 350 patients, with about 6000 images, which we make publicly available together with this manuscript. Our framework achieves an overall accuracy above 90% on image and patient-level.

摘要

我们提出了一种新的框架PlasmodiumVF-Net,用于在图像和患者层面分析厚涂片显微镜图像以进行疟疾诊断。我们的框架可检测患者是否被感染,若为疟疾感染,则报告患者是被 还是 感染。PlasmodiumVF-Net首先使用掩码区域卷积神经网络(Mask R-CNN)检测疟原虫寄生虫的候选对象,然后使用ResNet50分类器过滤掉误报,接着采用一种新方法,根据从检测到的斑块数量及其对所有患者图像的聚合概率获得的分数来识别寄生虫种类。由于检测到的寄生虫尺寸小、与染色伪影相似、不同发育阶段物种相似以及患者层面的光照或颜色变化,报告患者层面的诊断结果极具挑战性,因此在文献中也较少出现。我们使用了一个由350名患者组成的手动注释数据集,包含约6000张图像,并将其与本文一起公开。我们的框架在图像和患者层面的总体准确率超过90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b78/8621537/bb9fa718bfcf/diagnostics-11-01994-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验