Suppr超能文献

利用随机森林分类器从吉姆萨染色薄血涂片图像中检测和分期疟原虫。

Detection and stage classification of Plasmodium falciparum from images of Giemsa stained thin blood films using random forest classifiers.

机构信息

Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, Netherlands.

Department for Women's Health, University Clinic Tübingen, Tübingen, Germany.

出版信息

Diagn Pathol. 2020 Oct 23;15(1):130. doi: 10.1186/s13000-020-01040-9.

Abstract

BACKGROUND

The conventional method for the diagnosis of malaria parasites is the microscopic examination of stained blood films, which is time consuming and requires expertise. We introduce computer-based image segmentation and life stage classification with a random forest classifier. Segmentation and stage classification are performed on a large dataset of malaria parasites with ground truth labels provided by experts.

METHODS

We made use of Giemsa stained images obtained from the blood of 16 patients infected with Plasmodium falciparum. Experts labeled the parasite types from each of the images. We applied a two-step approach: image segmentation followed by life stage classification. In segmentation, we classified each pixel as a parasite or non-parasite pixel using a random forest classifier. Performance was evaluated with classification accuracy, Dice coefficient and free-response receiver operating characteristic (FROC) analysis. In life stage classification, we classified each of the segmented objects into one of 8 classes: 6 parasite life stages, early ring, late ring or early trophozoite, mid trophozoite, early schizont, late schizont or segmented, and two other classes, white blood cell or debris.

RESULTS

Our segmentation method gives an average cross-validated Dice coefficient of 0.82 which is a 13% improvement compared to the Otsu method. The Otsu method achieved a True Positive Fraction (TPF) of 0.925 at the expense of a False Positive Rate (FPR) of 2.45. At the same TPF of 0.925, our method achieved an FPR of 0.92, an improvement by more than a factor two. We find that inclusion of average intensity of the whole image as feature for the random forest considerably improves segmentation performance. We obtain an overall accuracy of 58.8% when classifying all life stages. Stages are mostly confused with their neighboring stages. When we reduce the life stages to ring, trophozoite and schizont only, we obtain an accuracy of 82.7%.

CONCLUSION

Pixel classification gives better segmentation performance than the conventional Otsu method. Effects of staining and background variations can be reduced with the inclusion of average intensity features. The proposed method and data set can be used in the development of automatic tools for the detection and stage classification of malaria parasites. The data set is publicly available as a benchmark for future studies.

摘要

背景

疟疾寄生虫诊断的传统方法是对染色血片进行显微镜检查,这种方法既耗时又需要专业知识。我们引入了基于计算机的图像分割和随机森林分类器的生活阶段分类。分割和阶段分类是在一个带有专家提供的真实标签的大型疟疾寄生虫数据集上进行的。

方法

我们利用从 16 名感染恶性疟原虫的患者血液中获得的吉姆萨染色图像。专家对每张图像中的寄生虫类型进行了标记。我们采用了两步法:图像分割和生活阶段分类。在分割中,我们使用随机森林分类器将每个像素分类为寄生虫或非寄生虫像素。使用分类准确性、Dice 系数和自由响应接收者操作特征(FROC)分析来评估性能。在生活阶段分类中,我们将每个分割对象分类为 8 个类之一:6 个寄生虫生活阶段、早期环、晚期环或早期滋养体、中期滋养体、早期裂殖体、晚期裂殖体或分割、以及另外两个类,白细胞或碎片。

结果

我们的分割方法的平均交叉验证 Dice 系数为 0.82,比 Otsu 方法提高了 13%。Otsu 方法在 FPR 为 2.45 的情况下达到了 0.925 的 True Positive Fraction (TPF)。在相同的 TPF 为 0.925 的情况下,我们的方法实现了 FPR 为 0.92,提高了两倍多。我们发现,将整幅图像的平均强度作为随机森林的特征包括在内,大大提高了分割性能。当对所有生活阶段进行分类时,我们获得了 58.8%的整体准确性。阶段主要与其相邻阶段混淆。当我们将生活阶段减少到环、滋养体和裂殖体时,我们获得了 82.7%的准确性。

结论

像素分类比传统的 Otsu 方法具有更好的分割性能。通过包括平均强度特征,可以减少染色和背景变化的影响。所提出的方法和数据集可用于开发自动检测和疟疾寄生虫阶段分类的工具。该数据集可作为未来研究的基准公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a269/7585298/8e29fc9d1489/13000_2020_1040_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验