文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚丁二酸丁二醇酯杂化多壁碳纳米管/氧化铁纳米复合材料:电磁屏蔽与热性能

Poly(Butylene Succinate) Hybrid Multi-Walled Carbon Nanotube/Iron Oxide Nanocomposites: Electromagnetic Shielding and Thermal Properties.

作者信息

Bleija Miks, Platnieks Oskars, Macutkevič Jan, Banys Jūras, Starkova Olesja, Grase Liga, Gaidukovs Sergejs

机构信息

Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia.

Faculty of Physics, Vilnius University, Sauletekio 9, LT-10222 Vilnius, Lithuania.

出版信息

Polymers (Basel). 2023 Jan 18;15(3):515. doi: 10.3390/polym15030515.


DOI:10.3390/polym15030515
PMID:36771816
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9921677/
Abstract

To address the ever-increasing electromagnetic interference (EMI) pollution, a hybrid filler approach for novel composites was chosen, with a focus on EMI absorbance. Carbon nanofiller loading was limited to 0.6 vol.% in order to create a sustainable and affordable solution. Multiwall carbon nanotubes (MWCNT) and iron oxide (FeO) nanoparticles were mixed in nine ratios from 0.1 to 0.6 vol.% and 8.0 to 12.0 vol.%, respectively. With the addition of surfactant, excellent particle dispersion was achieved (examined with SEM micrographs) in a bio-based and biodegradable poly(butylene succinate) (PBS) matrix. Hybrid design synergy was assessed for EMI shielding using dielectric spectroscopy in the microwave region and transmittance in the terahertz range. The shielding effectiveness (20-52 dB) was dominated by very high absorption at 30 GHz, while in the 0.1 to 1.0 THz range, transmittance was reduced by up to 6 orders of magnitude. Frequency-independent AC electrical conductivity (from 10 to 10 Hz) was reached upon adding 0.6 vol.% MWCNT and 10 vol.% FeO, with a value of around 3.1 × 10 S/m. Electrical and thermal conductivity were mainly affected by the content of MWCNT filler. The thermal conductivity scaled with the filler content and reached the highest value of 0.309 W/(mK) at 25 °C with the loading of 0.6 vol.% MWCNT and 12 vol.% FeO. The surface resistivity showed an incremental decrease with an increase in MWCNT loading and was almost unaffected by an increase in iron oxide loading. Thermal conductivity was almost independent of temperature in the measured range of 25 to 45 °C. The nanocomposites serve as biodegradable alternatives to commodity plastic-based materials and are promising in the field of electromagnetic applications, especially for EMI shielding.

摘要

为应对日益增加的电磁干扰(EMI)污染,我们选择了一种用于新型复合材料的混合填料方法,重点关注EMI吸收率。碳纳米填料的负载量限制在0.6体积%,以创造一种可持续且经济实惠的解决方案。多壁碳纳米管(MWCNT)和氧化铁(FeO)纳米颗粒分别以0.1至0.6体积%和8.0至12.0体积%的九种比例混合。通过添加表面活性剂,在生物基且可生物降解的聚丁二酸丁二醇酯(PBS)基体中实现了优异的颗粒分散(通过扫描电子显微镜照片检测)。使用微波区域的介电谱和太赫兹范围内的透过率对EMI屏蔽的混合设计协同效应进行了评估。屏蔽效能(20 - 52 dB)在30 GHz时主要由极高的吸收率主导,而在0.1至1.0太赫兹范围内,透过率降低了多达6个数量级。添加0.6体积%的MWCNT和10体积%的FeO后,实现了与频率无关的交流电导率(从10到10赫兹),其值约为3.1×10 S/m。电导率和热导率主要受MWCNT填料含量的影响。热导率随填料含量增加而增加,在25°C下,当负载0.6体积%的MWCNT和12体积%的FeO时达到最高值0.309 W/(mK)。表面电阻率随MWCNT负载量的增加而逐渐降低,几乎不受氧化铁负载量增加的影响。在25至45°C的测量范围内,热导率几乎与温度无关。这些纳米复合材料可作为商品塑料基材料的可生物降解替代品,在电磁应用领域,特别是EMI屏蔽方面具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/98a0eccdc844/polymers-15-00515-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/a294555b0c3a/polymers-15-00515-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/32bb6e45db20/polymers-15-00515-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/7fd0c945e761/polymers-15-00515-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/b032cdd7b668/polymers-15-00515-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/95cb105258b0/polymers-15-00515-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/3dc44a7a88f3/polymers-15-00515-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/98a0eccdc844/polymers-15-00515-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/a294555b0c3a/polymers-15-00515-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/32bb6e45db20/polymers-15-00515-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/7fd0c945e761/polymers-15-00515-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/b032cdd7b668/polymers-15-00515-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/95cb105258b0/polymers-15-00515-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/3dc44a7a88f3/polymers-15-00515-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a5/9921677/98a0eccdc844/polymers-15-00515-g008.jpg

相似文献

[1]
Poly(Butylene Succinate) Hybrid Multi-Walled Carbon Nanotube/Iron Oxide Nanocomposites: Electromagnetic Shielding and Thermal Properties.

Polymers (Basel). 2023-1-18

[2]
Comparison of Carbon-Nanoparticle-Filled Poly(Butylene Succinate-co-Adipate) Nanocomposites for Electromagnetic Applications.

Nanomaterials (Basel). 2022-10-19

[3]
High electromagnetic interference shielding of poly(ether-sulfone)/multi-walled carbon nanotube nanocomposites fabricated by an eco-friendly route.

Nanotechnology. 2020-9-18

[4]
Evaluation of thermal conductivity models and dielectric properties in metal oxide-filled poly(butylene succinate-co-adipate) composites.

Sci Rep. 2024-6-13

[5]
Processing-Mediated Different States of Dispersion of Multiwalled Carbon Nanotubes in PDMS Nanocomposites Influence EMI Shielding Performance.

ACS Omega. 2019-1-22

[6]
Multilayered Composites with Carbon Nanotubes for Electromagnetic Shielding Application.

Polymers (Basel). 2023-2-20

[7]
Electromagnetic interference shielding in 1-18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites.

Phys Chem Chem Phys. 2015-8-21

[8]
Improved Electromagnetic Interference Shielding Properties of MWCNT-PMMA Composites Using Layered Structures.

Nanoscale Res Lett. 2009-1-17

[9]
Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers.

Polymers (Basel). 2021-8-31

[10]
Facile Fabrication of PBS/CNTs Nanocomposite Foam for Electromagnetic Interference Shielding.

Chemphyschem. 2022-2-16

引用本文的文献

[1]
Bamboo-Based Carbon/Co/CoO Heterojunction Structures Based on a Multi-Layer Periodic Matrix Array Can Be Used for Efficient Electromagnetic Attenuation.

Materials (Basel). 2024-10-28

[2]
Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers.

Polymers (Basel). 2024-7-29

[3]
Evaluation of thermal conductivity models and dielectric properties in metal oxide-filled poly(butylene succinate-co-adipate) composites.

Sci Rep. 2024-6-13

[4]
Optimization of CoFeO nanoparticles and graphite fillers to endow thermoplastic polyurethane nanocomposites with superior electromagnetic interference shielding performance.

Nanoscale Adv. 2024-3-5

[5]
Tuning Electromagnetic Parameters Induced by Synergistic Dual-Polarization Enhancement Mechanisms with Amorphous Cobalt Phosphide with Phosphorus Vacancies for Excellent Electromagnetic Wave Dissipation Performance.

Nanomaterials (Basel). 2023-11-27

[6]
Modifications of Phase Morphology, Physical Properties, and Burning Anti-Dripping Performance of Compatibilized Poly(butylene succinate)/High-Density Polyethylene Blend by Adding Nanofillers.

Polymers (Basel). 2023-11-13

[7]
Achieving Excellent Dielectric and Energy Storage Performance in Core-Double-Shell-Structured Polyetherimide Nanocomposites.

Polymers (Basel). 2023-7-19

本文引用的文献

[1]
Comparison of Carbon-Nanoparticle-Filled Poly(Butylene Succinate-co-Adipate) Nanocomposites for Electromagnetic Applications.

Nanomaterials (Basel). 2022-10-19

[2]
Dielectric Properties of Hybrid Polyethylene Composites Containing Cobalt Nanoparticles and Carbon Nanotubes.

Materials (Basel). 2022-3-2

[3]
Facile Fabrication of PBS/CNTs Nanocomposite Foam for Electromagnetic Interference Shielding.

Chemphyschem. 2022-2-16

[4]
Fabrication of branching poly (butylene succinate)/cellulose nanocrystal foams with exceptional thermal insulation.

Carbohydr Polym. 2020-7-2

[5]
Dielectric Relaxation in the Hybrid Epoxy/MWCNT/MnFeO Composites.

Polymers (Basel). 2020-3-21

[6]
Melt-Mixed PP/MWCNT Composites: Influence of CNT Incorporation Strategy and Matrix Viscosity on Filler Dispersion and Electrical Resistivity.

Polymers (Basel). 2019-1-22

[7]
Effect of Clustering on the Heat Generated by Superparamagnetic Iron Oxide Nanoparticles.

Chimia (Aarau). 2019-2-27

[8]
Electrical Conduction Mechanism and Dielectric Properties of Spherical Shaped Fe₃O₄ Nanoparticles Synthesized by Co-Precipitation Method.

Materials (Basel). 2018-5-5

[9]
The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties.

Dalton Trans. 2015-12-28

[10]
Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles.

ACS Nano. 2015-9-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索