Suppr超能文献

成瘾与焦虑的计算机制:发展视角。

Computational Mechanisms of Addiction and Anxiety: A Developmental Perspective.

机构信息

Department of Psychology, New York University, New York, New York.

Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Cognitive and Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Biol Psychiatry. 2023 Apr 15;93(8):739-750. doi: 10.1016/j.biopsych.2023.02.004. Epub 2023 Feb 10.

Abstract

A central goal of computational psychiatry is to identify systematic relationships between transdiagnostic dimensions of psychiatric symptomatology and the latent learning and decision-making computations that inform individuals' thoughts, feelings, and choices. Most psychiatric disorders emerge prior to adulthood, yet little work has extended these computational approaches to study the development of psychopathology. Here, we lay out a roadmap for future studies implementing this approach by developing empirically and theoretically informed hypotheses about how developmental changes in model-based control of action and Pavlovian learning processes may modulate vulnerability to anxiety and addiction. We highlight how insights from studies leveraging computational approaches to characterize the normative developmental trajectories of clinically relevant learning and decision-making processes may suggest promising avenues for future developmental computational psychiatry research.

摘要

计算精神病学的一个核心目标是确定精神症状的跨诊断维度与潜在学习和决策计算之间的系统关系,这些计算为个体的思想、感觉和选择提供信息。大多数精神障碍在成年前就出现了,但很少有工作将这些计算方法扩展到研究精神病理学的发展。在这里,我们通过提出关于基于模型的行为控制和条件反射学习过程的发展变化如何调节焦虑和成瘾易感性的经验和理论上有根据的假设,为未来实施这种方法的研究制定了路线图。我们强调了利用计算方法来描述与临床相关的学习和决策过程的正常发展轨迹的研究可以为未来的发展计算精神病学研究提供有希望的途径。

相似文献

1
Computational Mechanisms of Addiction and Anxiety: A Developmental Perspective.
Biol Psychiatry. 2023 Apr 15;93(8):739-750. doi: 10.1016/j.biopsych.2023.02.004. Epub 2023 Feb 10.
3
Quantifying aberrant approach-avoidance conflict in psychopathology: A review of computational approaches.
Neurosci Biobehav Rev. 2023 Apr;147:105103. doi: 10.1016/j.neubiorev.2023.105103. Epub 2023 Feb 17.
4
[Affectivity and alexithymia: two dimensions explicative of the relationship between anxiety and depressive symptoms].
Encephale. 2012 Jun;38(3):187-93. doi: 10.1016/j.encep.2011.03.006. Epub 2011 Oct 7.
5
Driven by Pain, Not Gain: Computational Approaches to Aversion-Related Decision Making in Psychiatry.
Biol Psychiatry. 2020 Feb 15;87(4):359-367. doi: 10.1016/j.biopsych.2019.08.025. Epub 2019 Sep 9.
6
Development and validation of the Symptomatic Transdiagnostic Test (S2T).
Encephale. 2024 Feb;50(1):32-39. doi: 10.1016/j.encep.2022.11.004. Epub 2023 Jan 12.
9
Developmental deviation in delay discounting as a transdiagnostic indicator of risk for child psychopathology.
J Child Psychol Psychiatry. 2024 Feb;65(2):148-164. doi: 10.1111/jcpp.13870. Epub 2023 Jul 31.
10
Characterization of the Core Determinants of Social Influence From a Computational and Cognitive Perspective.
Front Psychiatry. 2022 Apr 18;13:846535. doi: 10.3389/fpsyt.2022.846535. eCollection 2022.

引用本文的文献

1
Difficult-to-Treat Anxiety: A Neurocomputational Framework.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025 Mar 28. doi: 10.1016/j.bpsc.2025.03.008.
2
An Active Inference Model of the Optimism Bias.
Comput Psychiatr. 2025 Jan 31;9(1):3-22. doi: 10.5334/cpsy.125. eCollection 2025.
4
Informing the treatment of social anxiety disorder with computational and neuroimaging data.
Psychoradiology. 2024 May 3;4:kkae010. doi: 10.1093/psyrad/kkae010. eCollection 2024.
5
Ethological computational psychiatry: Challenges and opportunities.
Curr Opin Neurobiol. 2024 Jun;86:102881. doi: 10.1016/j.conb.2024.102881. Epub 2024 May 1.
6
Current status, challenges and future prospects in computational psychiatry: a narrative review.
Consort Psychiatr. 2023 Sep 29;4(3):33-42. doi: 10.17816/CP11244.
7
Factors increasing the risk for food addiction in Ecuadorian students.
Front Psychiatry. 2024 Jan 3;14:1214266. doi: 10.3389/fpsyt.2023.1214266. eCollection 2023.
8
A primer on the use of computational modelling to investigate affective states, affective disorders and animal welfare in non-human animals.
Cogn Affect Behav Neurosci. 2024 Apr;24(2):370-383. doi: 10.3758/s13415-023-01137-w. Epub 2023 Nov 30.

本文引用的文献

2
Alcohol Approach Bias Is Associated With Both Behavioral and Neural Pavlovian-to-Instrumental Transfer Effects in Alcohol-Dependent Patients.
Biol Psychiatry Glob Open Sci. 2022 Apr 14;3(3):443-450. doi: 10.1016/j.bpsgos.2022.03.014. eCollection 2023 Jul.
3
Trait anxiety is associated with hidden state inference during aversive reversal learning.
Nat Commun. 2023 Jul 14;14(1):4203. doi: 10.1038/s41467-023-39825-3.
4
The interpretation of computational model parameters depends on the context.
Elife. 2022 Nov 4;11:e75474. doi: 10.7554/eLife.75474.
5
Reinstatement of Pavlovian responses to alcohol cues by stress.
Psychopharmacology (Berl). 2023 Mar;240(3):531-545. doi: 10.1007/s00213-022-06255-w. Epub 2022 Oct 13.
6
A systematic review of the impact of COVID-19 on the game addiction of children and adolescents.
Front Psychiatry. 2022 Aug 18;13:976601. doi: 10.3389/fpsyt.2022.976601. eCollection 2022.
7
The computational roots of positivity and confirmation biases in reinforcement learning.
Trends Cogn Sci. 2022 Jul;26(7):607-621. doi: 10.1016/j.tics.2022.04.005. Epub 2022 May 31.
8
Flexibility in valenced reinforcement learning computations across development.
Child Dev. 2022 Sep;93(5):1601-1615. doi: 10.1111/cdev.13791. Epub 2022 May 21.
9
A meta-analysis of conditioned fear generalization in anxiety-related disorders.
Neuropsychopharmacology. 2022 Aug;47(9):1652-1661. doi: 10.1038/s41386-022-01332-2. Epub 2022 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验