Suppr超能文献

比较用于估计 COVID-19 中政府干预效果的建模方法:自愿行为变化的影响。

Comparing modelling approaches for the estimation of government intervention effects in COVID-19: Impact of voluntary behavior changes.

机构信息

School of Government, Peking University, Beijing, China.

Institute of Public Governance, Peking University, Beijing, China.

出版信息

PLoS One. 2023 Feb 15;18(2):e0276906. doi: 10.1371/journal.pone.0276906. eCollection 2023.

Abstract

The efficacy of government interventions in epidemic has become a hot subject since the onset of COVID-19. There is however much variation in the results quantifying the effects of interventions, which is partly related to the varying modelling approaches employed by existing studies. Among the many factors affecting the modelling results, people's voluntary behavior change is less examined yet likely to be widespread. This paper therefore aims to analyze how the choice of modelling approach, in particular how voluntary behavior change is accounted for, would affect the intervention effect estimation. We conduct the analysis by experimenting different modelling methods on a same data set composed of the 500 most infected U.S. counties. We compare the most frequently used methods from the two classes of modelling approaches, which are Bayesian hierarchical model from the class of computational approach and difference-in-difference from the class of natural experimental approach. We find that computational methods that do not account for voluntary behavior changes are likely to produce larger estimates of intervention effects as assumed. In contrast, natural experimental methods are more likely to extract the true effect of interventions by ruling out simultaneous behavior change. Among different difference-in-difference estimators, the two-way fixed effect estimator seems to be an efficient one. Our work can inform the methodological choice of future research on this topic, as well as more robust re-interpretation of existing works, to facilitate both future epidemic response plans and the science of public health.

摘要

自 COVID-19 爆发以来,政府干预措施的效果已成为一个热门话题。然而,量化干预效果的研究结果存在很大差异,这在一定程度上与现有研究采用的不同建模方法有关。在影响建模结果的众多因素中,人们的自愿行为改变虽然很普遍,但却较少受到关注。因此,本文旨在分析建模方法的选择,特别是如何考虑自愿行为改变,如何影响干预效果的估计。我们通过在由美国 500 个受感染最严重的县组成的同一数据集上实验不同的建模方法来进行分析。我们比较了来自计算方法类和自然实验方法类这两类建模方法中最常用的方法,即贝叶斯分层模型和差异中的差异。我们发现,不考虑自愿行为变化的计算方法可能会产生更大的干预效果估计值。相比之下,自然实验方法更有可能通过排除同时发生的行为变化来提取干预的真实效果。在不同的差异中的差异估计量中,双向固定效应估计量似乎是一种有效的估计量。我们的工作可以为未来关于这一主题的研究提供方法选择的信息,以及对现有工作的更稳健的重新解释,以促进未来的疫情应对计划和公共卫生科学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cfe/9931149/7e69397c8372/pone.0276906.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验