Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, MA 01003, Amherst, USA.
Mater Horiz. 2021 Nov 29;8(12):3424-3431. doi: 10.1039/d1mh01408k.
Bioorthogonal transformation of imaging and therapeutic substrates using transition metal catalysts (TMCs) provides a toolkit with diverse applications in biomedicine. Controlled localization of bioorthogonal catalysis is key for enhancing their therapeutic efficacy by minimizing off-target effects. Red blood cells (RBCs) are highly biocompatible and are susceptible to hemolysis by bacterial toxins, providing them with intrinsic targeting to bacterial infections. A hitchhiking strategy using RBCs is reported, that activates bioorthogonal catalysis at infection sites. A library of nanoparticles embedded with TMCs (nanozymes) featuring diverse functional groups with different binding ability to RBCs is generated. These engineered nanozymes bind to RBCs and subsequently release upon hemolysis by bacterial toxins, resulting in selective accumulation at the site of bacterial infections. The antimicrobial action is specific: catalytic activation of pro-antibiotics eradicated pathogenic biofilms without harming non-virulent bacterial species.
利用过渡金属催化剂(TMCs)对成像和治疗底物进行生物正交转化,为生物医药领域的多种应用提供了一个工具包。通过最小化脱靶效应,控制生物正交催化的定位是提高其治疗效果的关键。红细胞(RBCs)具有高度的生物相容性,并且容易受到细菌毒素的溶血作用,这为它们提供了对细菌感染的内在靶向性。报道了一种利用 RBCs 的搭便车策略,该策略可在感染部位激活生物正交催化。生成了具有不同功能基团的 TMCs(纳米酶)嵌入的纳米粒子库,这些功能基团与 RBC 具有不同的结合能力。这些工程纳米酶与 RBC 结合,随后通过细菌毒素的溶血作用释放,从而导致在细菌感染部位的选择性积累。抗菌作用是特异性的:前抗生素的催化激活消除了致病性生物膜,而不会伤害非毒性细菌种类。