Correia-Branco Ana, Mei Ariel, Pillai Sreehari, Jayaraman Nirmala, Sharma Radhika, Paquette Alison G, Neradugomma Naveen K, Benson Ciara, Chavkin Nicholas W, Mao Qingcheng, Wallingford Mary C
Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA.
University of Washington, Department of Pediatrics, Seattle, Washington, USA.
Vasc Biol. 2023 Apr 19;5(1). doi: 10.1530/VB-22-0018. Print 2023 Apr 1.
The placenta mediates the transport of nutrients, such as inorganic phosphate (Pi), between the maternal and fetal circulatory systems. The placenta itself also requires high levels of nutrient uptake as it develops to provide critical support for fetal development. This study aimed to determine placental Pi transport mechanisms using in vitro and in vivo models. We observed that Pi (P33) uptake in BeWo cells is sodium dependent and that SLC20A1/Slc20a1 is the most highly expressed placental sodium-dependent transporter in mouse (microarray), human cell line (RT-PCR) and term placenta (RNA-seq), supporting that normal growth and maintenance of the mouse and human placenta requires SLC20A1/Slc20a1. Slc20a1 wild-type (Slc20a1+/+) and knockout (Slc20a1-/-) mice were produced through timed intercrosses and displayed yolk sac angiogenesis failure as expected at E10.5. E9.5 tissues were analyzed to test whether placental morphogenesis requires Slc20a1. At E9.5, the developing placenta was reduced in size in Slc20a1-/-. Multiple structural abnormalities were also observed in the Slc20a1-/-chorioallantois. We determined that monocarboxylate transporter 1 protein (MCT1+) cells were reduced in developing Slc20a1-/-placenta, confirming that Slc20a1 loss reduced trophoblast syncytiotrophoblast 1 (SynT-I) coverage. Next, we examined the cell type-specific Slc20a1 expression and SynT molecular pathways in silico and identified Notch/Wnt as a pathway of interest that regulates trophoblast differentiation. We further observed that specific trophoblast lineages express Notch/Wnt genes that associate with endothelial cell tip-and-stalk cell markers. In conclusion, our findings support that Slc20a1 mediates the symport of Pi into SynT cells, providing critical support for their differentiation and angiogenic mimicry function at the developing maternal-fetal interface.
胎盘介导母体和胎儿循环系统之间营养物质的运输,如无机磷酸盐(Pi)。胎盘自身在发育过程中也需要大量摄取营养物质,以对胎儿发育提供关键支持。本研究旨在利用体外和体内模型确定胎盘Pi转运机制。我们观察到BeWo细胞中Pi(P33)摄取依赖于钠,且SLC20A1/Slc20a1是小鼠(微阵列)、人细胞系(逆转录聚合酶链反应)和足月胎盘(RNA测序)中表达最高的胎盘钠依赖性转运体,这支持小鼠和人胎盘的正常生长和维持需要SLC20A1/Slc20a1。通过定时杂交产生了Slc20a1野生型(Slc20a1+/+)和敲除型(Slc20a1-/-)小鼠,如预期在胚胎第10.5天显示卵黄囊血管生成失败。分析胚胎第9.5天的组织以测试胎盘形态发生是否需要Slc20a1。在胚胎第9.5天,Slc20a1-/-小鼠中发育中的胎盘尺寸减小。在Slc20a1-/-绒膜尿囊膜中也观察到多种结构异常。我们确定在发育中的Slc20a1-/-胎盘中单羧酸转运蛋白1阳性(MCT1+)细胞减少,证实Slc20a1缺失减少了滋养层合体滋养层1(SynT-I)覆盖。接下来,我们在计算机上检查了细胞类型特异性的Slc20a1表达和SynT分子途径,并确定Notch/Wnt是调节滋养层分化的一个感兴趣的途径。我们进一步观察到特定的滋养层谱系表达与内皮细胞尖端和茎细胞标记物相关的Notch/Wnt基因。总之,我们的研究结果支持Slc20a1介导Pi同向转运进入SynT细胞,为其在发育中的母胎界面的分化和血管生成拟态功能提供关键支持。