Suppr超能文献

受氨基酸影响的肿瘤微环境和肿瘤免疫。

Influenced tumor microenvironment and tumor immunity by amino acids.

机构信息

Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Sichuan, Chengdu, China.

出版信息

Front Immunol. 2023 Jan 31;14:1118448. doi: 10.3389/fimmu.2023.1118448. eCollection 2023.

Abstract

It is widely accepted that tumors are a complex tissue composed of cancer cells, extracellular matrix, inflammatory cells, immune cells, and other cells. Deregulation of tumor microenvironment promotes tumor aggressiveness by sustaining cell growth, invasion, and survival from immune surveillance. The concepts that some dietary nutrients could change tumor microenvironment are extremely attractive. Many studies demonstrated that high-fat diet-induced obesity shaped metabolism to suppress anti-tumor immunity, but how amino acids changed the tumor microenvironment and impacted tumor immunity was still not totally understood. In fact, amino acid metabolism in different signaling pathways and their cross-talk shaped tumor immunity and therapy efficacy in cancer patients. Our review focused on mechanisms by which amino acid influenced tumor microenvironment, and found potential drug targets for immunotherapy in cancer.

摘要

人们普遍认为,肿瘤是一种由癌细胞、细胞外基质、炎性细胞、免疫细胞和其他细胞组成的复杂组织。肿瘤微环境的失调通过维持细胞生长、侵袭和逃避免疫监视来促进肿瘤的侵袭性。一些膳食营养素可以改变肿瘤微环境的观点极具吸引力。许多研究表明,高脂肪饮食诱导的肥胖改变了代谢,从而抑制了抗肿瘤免疫,但氨基酸如何改变肿瘤微环境并影响肿瘤免疫仍不完全清楚。事实上,不同信号通路中的氨基酸代谢及其相互作用塑造了肿瘤免疫和癌症患者的治疗效果。我们的综述重点关注了氨基酸影响肿瘤微环境的机制,并发现了癌症免疫治疗的潜在药物靶点。

相似文献

1
Influenced tumor microenvironment and tumor immunity by amino acids.
Front Immunol. 2023 Jan 31;14:1118448. doi: 10.3389/fimmu.2023.1118448. eCollection 2023.
2
Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy.
Mol Cell. 2020 Nov 5;80(3):384-395. doi: 10.1016/j.molcel.2020.09.006. Epub 2020 Sep 29.
3
Targeting SLC1A5 and SLC3A2/SLC7A5 as a Potential Strategy to Strengthen Anti-Tumor Immunity in the Tumor Microenvironment.
Front Immunol. 2021 Apr 19;12:624324. doi: 10.3389/fimmu.2021.624324. eCollection 2021.
4
Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity.
Cell. 2020 Dec 23;183(7):1848-1866.e26. doi: 10.1016/j.cell.2020.11.009. Epub 2020 Dec 9.
6
Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity.
J Exp Clin Cancer Res. 2023 Nov 3;42(1):291. doi: 10.1186/s13046-023-02845-4.
7
Tumor Microenvironment: A Metabolic Player that Shapes the Immune Response.
Int J Mol Sci. 2019 Dec 25;21(1):157. doi: 10.3390/ijms21010157.
8
Metabolism of Immune Cells in the Tumor Microenvironment.
Adv Exp Med Biol. 2021;1311:173-185. doi: 10.1007/978-3-030-65768-0_13.
9
The Role of Non-essential Amino Acids in T Cell Function and Anti-tumour Immunity.
Arch Immunol Ther Exp (Warsz). 2021 Oct 12;69(1):29. doi: 10.1007/s00005-021-00633-6.
10
Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy.
Front Immunol. 2021 Feb 24;12:613492. doi: 10.3389/fimmu.2021.613492. eCollection 2021.

引用本文的文献

1
3
Harnessing nutrient scarcity for enhanced CAR-T-cell potency and safety in solid tumors.
Cell Mol Immunol. 2025 May 8. doi: 10.1038/s41423-025-01290-x.
4
Advanced pathological subtype classification of thyroid cancer using efficientNetB0.
Diagn Pathol. 2025 Mar 7;20(1):28. doi: 10.1186/s13000-025-01621-6.
5
Metabolic regulation of the immune system in health and diseases: mechanisms and interventions.
Signal Transduct Target Ther. 2024 Oct 9;9(1):268. doi: 10.1038/s41392-024-01954-6.
6
Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective.
Mol Cancer. 2024 Sep 18;23(1):202. doi: 10.1186/s12943-024-02113-9.
8
Targeting metabolism to improve CAR-T cells therapeutic efficacy.
Chin Med J (Engl). 2024 Apr 20;137(8):909-920. doi: 10.1097/CM9.0000000000003046. Epub 2024 Mar 19.
9
Analyzing the impact of metabolism on immune cells in tumor microenvironment to promote the development of immunotherapy.
Front Immunol. 2024 Jan 8;14:1307228. doi: 10.3389/fimmu.2023.1307228. eCollection 2023.

本文引用的文献

2
Metabolic communication in the tumour-immune microenvironment.
Nat Cell Biol. 2022 Nov;24(11):1574-1583. doi: 10.1038/s41556-022-01002-x. Epub 2022 Oct 13.
3
Circulating L-arginine predicts the survival of cancer patients treated with immune checkpoint inhibitors.
Ann Oncol. 2022 Oct;33(10):1041-1051. doi: 10.1016/j.annonc.2022.07.001. Epub 2022 Jul 16.
4
Methionine deficiency facilitates antitumour immunity by altering mA methylation of immune checkpoint transcripts.
Gut. 2023 Mar;72(3):501-511. doi: 10.1136/gutjnl-2022-326928. Epub 2022 Jul 8.
5
Regulatory B cells gain muscles with a leucine-rich diet.
Immunity. 2022 Jun 14;55(6):970-972. doi: 10.1016/j.immuni.2022.05.011.
6
Targeting the methionine addiction of cancer.
Am J Cancer Res. 2022 May 15;12(5):2249-2276. eCollection 2022.
7
Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion.
Immunity. 2022 Jun 14;55(6):1067-1081.e8. doi: 10.1016/j.immuni.2022.04.017. Epub 2022 Jun 3.
8
Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics.
Nat Cell Biol. 2022 Mar;24(3):307-315. doi: 10.1038/s41556-022-00856-5. Epub 2022 Mar 14.
10
Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas.
Nat Cancer. 2021 Jul;2(7):723-740. doi: 10.1038/s43018-021-00201-z. Epub 2021 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验