Suppr超能文献

开发和验证 IVF/ICSI 中预期卵巢反应不良患者活产预测模型。

Development and validation of a live birth prediction model for expected poor ovarian response patients during IVF/ICSI.

机构信息

Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China.

出版信息

Front Endocrinol (Lausanne). 2023 Jan 31;14:1027805. doi: 10.3389/fendo.2023.1027805. eCollection 2023.

Abstract

BACKGROUND

A number of live birth predictive model during assisted reproductive technology treatment have been available in recent years, but few targeted evaluating the chances of live birth in poor ovarian response(POR) patients. The aim of this study was to develop a nomogram based on POSEIDON criteria to predict live birth in patients with expected POR.

METHODS

This retrospective cohort study using clinical data from 657 patients in POSEIDON Groups 3 and 4 (antral follicle count [AFC] ≤5 and AMH <1.2 ng/ml) in the Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, and Construction a nomogram model t.

RESULTS

Among 657 expected POR patients, 111 (16.89%) had live births, and 546 (83.11%) did not have live births. These were divided into a training set(n=438) and a validation set (n=219). Multivariate logistic regression analysis showed that the age (OR = 0.91, 95% CI: 0.86-0.97), BMI (OR = 1.98, 95% CI: 1.09-3.67), AMH (OR = 3.48, 95% CI: 1.45-8.51), normal fertilized oocytes (OR = 1.40, 95% CI: 1.21-1.63), and the basal FSH (OR = 0.89, 95% CI: 0.80-0.98) of the female were independent factors predicting live birth in patients with expected POR. Then, an individualized nomogram prediction model was built from these five factors. The area under the ROC curve of the live birth prediction model was 0.820 in the training set and 0.879 in the validation set.

CONCLUSION

We have developed a nomogram combining clinical and laboratory factors to predict the probability of live birth in patients with an expected POR during IVF/ICSI, which can helpful for clinician in decision-making. However, the data comes from the same center, needs a prospective multicenter study for further in-depth evaluation and validation of this prediction model.

摘要

背景

近年来,已有许多预测辅助生殖技术治疗中活产的预测模型,但针对卵巢反应不良(POR)患者活产机会的评估模型较少。本研究旨在基于 POSEIDON 标准建立一个预测模型,以预测预期 POR 患者的活产机会。

方法

这是一项回顾性队列研究,使用了新疆医科大学第一附属医院生殖医学中心 POSEIDON 分组 3 和 4 组(窦卵泡计数 [AFC]≤5 和 AMH<1.2ng/ml)的 657 例患者的临床数据,建立预测模型。

结果

在 657 例预期 POR 患者中,有 111 例(16.89%)活产,546 例(83.11%)未活产。这些患者被分为训练集(n=438)和验证集(n=219)。多因素 logistic 回归分析表明,年龄(OR=0.91,95%CI:0.86-0.97)、BMI(OR=1.98,95%CI:1.09-3.67)、AMH(OR=3.48,95%CI:1.45-8.51)、正常受精卵(OR=1.40,95%CI:1.21-1.63)和基础 FSH(OR=0.89,95%CI:0.80-0.98)是预测预期 POR 患者活产的独立因素。然后,从这五个因素中建立了一个个体化的列线图预测模型。该模型在训练集中的活产预测 ROC 曲线下面积为 0.820,在验证集中为 0.879。

结论

我们建立了一个结合临床和实验室因素的列线图预测模型,以预测 IVF/ICSI 中预期 POR 患者的活产概率,这有助于临床医生做出决策。然而,该数据来自同一中心,需要进一步进行前瞻性多中心研究,以深入评估和验证该预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efc1/9927003/b3c320e00de4/fendo-14-1027805-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验