Suppr超能文献

设计一个实时的针对 1 型糖尿病患者的身体活动检测和分类框架。

Design of a Real-Time Physical Activity Detection and Classification Framework for Individuals With Type 1 Diabetes.

机构信息

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.

Sansum Diabetes Research Institute, Santa Barbara, CA, USA.

出版信息

J Diabetes Sci Technol. 2024 Sep;18(5):1146-1156. doi: 10.1177/19322968231153896. Epub 2023 Feb 17.

Abstract

BACKGROUND

Managing glycemia during and after exercise events in type 1 diabetes (T1D) is challenging since these events can have wide-ranging effects on glycemia depending on the event timing, type, intensity. To this end, advanced physical activity-informed technologies can be beneficial for improving glucose control.

METHODS

We propose a real-time physical activity detection and classification framework, which builds upon random forest models. This module automatically detects exercise sessions and predicts the activity type and intensity from tri-axial accelerometer, heart rate, and continuous glucose monitoring records.

RESULTS

Data from 19 adults with T1D who performed structured sessions of either aerobic, resistance, or high-intensity interval exercise at varying times of day were used to train and test this framework. The exercise onset and completion were both predicted within 1 minute with an average accuracy of 81% and 78%, respectively. Activity type and intensity were identified within 2.38 minutes and from the exercise onset. On participants assigned to the test set, the average accuracy for activity type and intensity classification was 74% and 73%, respectively, if exercise was announced. For unannounced exercise events, the classification accuracy was 65% for the activity type and 70% for its intensity.

CONCLUSIONS

The proposed module showed high performance in detection and classification of exercise in real-time within a minute of exercise onset. Integration of this module into insulin therapy decisions can help facilitate glucose management around physical activity.

摘要

背景

在 1 型糖尿病(T1D)患者中,管理运动期间和运动后的血糖具有挑战性,因为这些事件会根据事件时间、类型和强度对血糖产生广泛的影响。为此,先进的与身体活动相关的技术可以有助于改善血糖控制。

方法

我们提出了一个实时身体活动检测和分类框架,该框架基于随机森林模型。该模块可自动检测运动时段,并根据三轴加速度计、心率和连续血糖监测记录预测活动类型和强度。

结果

该框架使用了 19 名 T1D 成年人的数据,这些成年人在一天中的不同时间进行了有氧运动、抗阻运动或高强度间歇运动的结构化运动。运动的开始和结束都可以在 1 分钟内预测,平均准确率分别为 81%和 78%。活动类型和强度可以在运动开始后 2.38 分钟内识别。对于分配到测试集的参与者,如果宣布了运动,活动类型和强度分类的平均准确率分别为 74%和 73%。对于未宣布的运动事件,活动类型的分类准确率为 65%,强度的分类准确率为 70%。

结论

该模块在运动开始后一分钟内实时检测和分类运动方面表现出了很高的性能。将该模块集成到胰岛素治疗决策中可以帮助实现运动期间的血糖管理。

相似文献

本文引用的文献

8
New closed-loop insulin systems.新型闭环胰岛素系统。
Diabetologia. 2021 May;64(5):1007-1015. doi: 10.1007/s00125-021-05391-w. Epub 2021 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验