Suppr超能文献

GenECG:一个基于合成图像的心电图数据集,用于促进人工智能增强算法的开发。

GenECG: a synthetic image-based ECG dataset to augment artificial intelligence-enhanced algorithm development.

作者信息

Bodagh Neil, Tun Kyaw Soe, Barton Adam, Javidi Malihe, Rashid Darwon, Burns Rachel, Kotadia Irum, Klis Magda, Gharaviri Ali, Vigneswaran Vinush, Niederer Steven, O'Neill Mark, Bernabeu Miguel O, Williams Steven E

机构信息

School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK

Guy's and St Thomas' NHS Foundation Trust, London, UK.

出版信息

BMJ Health Care Inform. 2025 May 31;32(1):e101335. doi: 10.1136/bmjhci-2024-101335.

Abstract

OBJECTIVES

An image-based ECG dataset incorporating visual imperfections common to paper-based ECGs, which are typically scanned or photographed into electronic health records, could facilitate clinically useful artificial intelligence (AI)-ECG algorithm development. This study aimed to create a high-fidelity, synthetic image-based ECG dataset.

METHODS

ECG images were recreated from the PTB-XL database, a signal-based dataset and image manipulation techniques were applied to mimic imperfections associated with ECGs in real-world settings. Clinical Turing tests were conducted to evaluate the fidelity of the synthetic images, and the performance of current AI-ECG algorithms was assessed using synthetic images containing visual imperfections.

RESULTS

GenECG, an image-based dataset containing 21 799 ECGs with visual imperfections encountered in routine clinical care paired with imperfection-free images, was created. Turing tests confirmed the realism of the images: expert observer accuracy of discrimination between real-world and synthetic ECGs fell from 63.9% (95% CI 58.0% to 69.8%) to 53.3% (95% CI 48.6% to 58.1%) over three rounds of testing, indicating that observers could not distinguish between synthetic and real ECGs. The performance of pre-existing algorithms on synthetic (area under the curve (AUC) 0.592, 95% CI 0.421 to 0.763) and real-world (AUC 0.647, 95% CI 0.520 to 0.774) ECG images containing imperfections was limited. Algorithm fine-tuning with GenECG data improved real-world ECG classification accuracy (AUC 0.821, 95% CI 0.730 to 0.913) demonstrating its potential to augment image-based algorithm development.

DISCUSSION/CONCLUSION: GenECG is the first synthetic image-based ECG dataset to pass a clinical Turing test. The dataset will enable image-based AI-ECG algorithm development, ensuring utility in low resource areas, prehospital settings and hospital environments where signal data are unavailable.

摘要

目的

一个基于图像的心电图数据集,纳入纸质心电图常见的视觉缺陷,这些缺陷通常会被扫描或拍照后录入电子健康记录,这有助于开发具有临床实用性的人工智能(AI)心电图算法。本研究旨在创建一个高保真的、基于合成图像的心电图数据集。

方法

从基于信号的数据集PTB-XL数据库中重新创建心电图图像,并应用图像处理技术来模拟现实环境中心电图相关的缺陷。进行临床图灵测试以评估合成图像的逼真度,并使用包含视觉缺陷的合成图像评估当前AI心电图算法的性能。

结果

创建了GenECG,这是一个基于图像的数据集,包含21799份在常规临床护理中遇到的有视觉缺陷的心电图,并配有无缺陷图像。图灵测试证实了图像的真实性:在三轮测试中,专家观察者区分真实世界心电图和合成心电图的准确率从63.9%(95%CI 58.0%至69.8%)降至53.3%(95%CI 48.6%至58.1%),这表明观察者无法区分合成心电图和真实心电图。现有算法在包含缺陷的合成(曲线下面积(AUC)0.592,95%CI 0.421至0.763)和真实世界(AUC 0.647,95%CI 0.520至0.774)心电图图像上的性能有限。使用GenECG数据进行算法微调提高了真实世界心电图分类的准确率(AUC 0.821,95%CI 0.730至0.913),证明了其增强基于图像的算法开发的潜力。

讨论/结论:GenECG是第一个通过临床图灵测试的基于合成图像的心电图数据集。该数据集将推动基于图像的AI心电图算法开发,确保在信号数据不可用的低资源地区、院前环境和医院环境中具有实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8db3/12142132/b6b241e3cfbd/bmjhci-32-1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验