文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

The State of the Art of Natural Polymer Functionalized FeO Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review.

作者信息

Nordin Abu Hassan, Ahmad Zuliahani, Husna Siti Muhamad Nur, Ilyas Rushdan Ahmad, Azemi Ahmad Khusairi, Ismail Noraznawati, Nordin Muhammad Luqman, Ngadi Norzita, Siti Nordin Hawa, Nabgan Walid, Norfarhana Abd Samad, Azami Mohammad Saifulddin Mohd

机构信息

Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.

Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia.

出版信息

Gels. 2023 Feb 1;9(2):121. doi: 10.3390/gels9020121.


DOI:10.3390/gels9020121
PMID:36826291
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9957034/
Abstract

Natural polymers have received a great deal of interest for their potential use in the encapsulation and transportation of pharmaceuticals and other bioactive compounds for disease treatment. In this perspective, the drug delivery systems (DDS) constructed by representative natural polymers from animals (gelatin and hyaluronic acid), plants (pectin and starch), and microbes (Xanthan gum and Dextran) are provided. In order to enhance the efficiency of polymers in DDS by delivering the medicine to the right location, reducing the medication's adverse effects on neighboring organs or tissues, and controlling the medication's release to stop the cycle of over- and under-dosing, the incorporation of FeO magnetic nanoparticles with the polymers has engaged the most consideration due to their rare characteristics, such as easy separation, superparamagnetism, and high surface area. This review is designed to report the recent progress of natural polymeric FeO magnetic nanoparticles in drug delivery applications, based on different polymers' origins.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/b10155125b96/gels-09-00121-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/3a1a099a6d03/gels-09-00121-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/06c857d8daf3/gels-09-00121-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/100554b6a575/gels-09-00121-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/e06a900ccab5/gels-09-00121-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/2ecc9ab8eee3/gels-09-00121-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/4b374bf92813/gels-09-00121-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/ad0e20383639/gels-09-00121-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/7fe5404a39a2/gels-09-00121-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/32414f5fbc2d/gels-09-00121-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/4f0481211577/gels-09-00121-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/e87f87cbbaea/gels-09-00121-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/87c15510253a/gels-09-00121-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/2984d39c1cfa/gels-09-00121-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/b10155125b96/gels-09-00121-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/3a1a099a6d03/gels-09-00121-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/06c857d8daf3/gels-09-00121-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/100554b6a575/gels-09-00121-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/e06a900ccab5/gels-09-00121-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/2ecc9ab8eee3/gels-09-00121-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/4b374bf92813/gels-09-00121-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/ad0e20383639/gels-09-00121-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/7fe5404a39a2/gels-09-00121-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/32414f5fbc2d/gels-09-00121-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/4f0481211577/gels-09-00121-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/e87f87cbbaea/gels-09-00121-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/87c15510253a/gels-09-00121-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/2984d39c1cfa/gels-09-00121-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ae/9957034/b10155125b96/gels-09-00121-g014.jpg

相似文献

[1]
The State of the Art of Natural Polymer Functionalized FeO Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review.

Gels. 2023-2-1

[2]
Research trends in functionalized FeO composites based on affinity recognition systems for targeted extraction of natural products.

J Chromatogr A. 2024-8-16

[3]
A Review of Bioactive Glass/Natural Polymer Composites: State of the Art.

Materials (Basel). 2020-12-6

[4]
Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis.

Drug Deliv Transl Res. 2022-11

[5]
Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update.

Pharmaceutics. 2023-7-31

[6]
A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy.

Int J Biol Macromol. 2020-8-1

[7]
Hydroxyurea-loaded FeO/SiO/chitosan-g-mPEG2000 nanoparticles; pH-dependent drug release and evaluation of cell cycle arrest and altering p53 and lincRNA-p21 genes expression.

Naunyn Schmiedebergs Arch Pharmacol. 2022-1

[8]
Correction: Nordin et al. The State of the Art of Natural Polymer Functionalized FeO Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review. 2023, , 121.

Gels. 2024-1-15

[9]
Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications.

Pharmaceutics. 2023-10-23

[10]
Sustainable plant and microbes-mediated preparation of FeO nanoparticles and industrial application of its chitosan, starch, cellulose, and dextrin-based nanocomposites as catalysts.

Int J Biol Macromol. 2021-5-15

引用本文的文献

[1]
The Nanocarrier Landscape─Evaluating Key Drug Delivery Vehicles and Their Capabilities: A Translational Perspective.

ACS Appl Mater Interfaces. 2025-7-2

[2]
Adsorption of Organic Pollutants from Wastewater Using Chitosan-Based Adsorbents.

Polymers (Basel). 2025-2-14

[3]
Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy.

J Nanobiotechnology. 2024-11-27

[4]
A novel ternary magnetic nanobiocomposite based on tragacanth-silk fibroin hydrogel for hyperthermia and biological properties.

Sci Rep. 2024-4-8

[5]
Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine.

Int J Mol Sci. 2024-2-28

[6]
Core-Shell FeO@C Nanoparticles as Highly Effective T Magnetic Resonance Imaging Contrast Agents: In Vitro and In Vivo Studies.

Nanomaterials (Basel). 2024-1-12

[7]
Correction: Nordin et al. The State of the Art of Natural Polymer Functionalized FeO Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review. 2023, , 121.

Gels. 2024-1-15

[8]
Superparamagnetic Artificial Cells PLGA-FeO Micro/Nanocapsules for Cancer Targeted Delivery.

Cancers (Basel). 2023-12-12

[9]
Development of Iron-Silicate Composites by Waste Glass and Iron or Steel Powders.

Molecules. 2023-8-28

[10]
Formation Features of Polymer-Metal-Carbon Ternary Electromagnetic Nanocomposites Based on Polyphenoxazine.

Polymers (Basel). 2023-6-29

本文引用的文献

[1]
The Treatment of Keloid Scars via Modulating Heterogeneous Gelatin-Structured Composite Microneedles to Control Transdermal Dual-Drug Release.

Polymers (Basel). 2022-10-20

[2]
Solubility Enhancement, Formulation Development, and Antibacterial Activity of Xanthan-Gum-Stabilized Colloidal Gold Nanogel of Hesperidin against .

Gels. 2022-10-14

[3]
Hyaluronic Acid: A Review of the Drug Delivery Capabilities of This Naturally Occurring Polysaccharide.

Polymers (Basel). 2022-8-23

[4]
Dual crosslinking of folic acid-modified pectin nanoparticles for enhanced oral insulin delivery.

Biomater Adv. 2022-4

[5]
Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications.

Polymers (Basel). 2022-6-10

[6]
Colon-targeted oral nanoparticles based on ROS-scavenging hydroxyethyl starch-curcumin conjugates for efficient inflammatory bowel disease therapy.

Int J Pharm. 2022-7-25

[7]
Xanthan gum derivatives: review of synthesis, properties and diverse applications.

RSC Adv. 2020-7-21

[8]
Synthesis and characterization of phase shift dextran stabilized nanodroplets for ultrasound-induced cancer therapy: A novel nanobiotechnology approach.

J Biotechnol. 2022-5-20

[9]
Repaglinide-laden hydrogel particles of xanthan gum derivatives for the management of diabetes.

Carbohydr Polym. 2022-7-1

[10]
Multi-stimuli responsive hydrogels derived from hyaluronic acid for cancer therapy application.

Carbohydr Polym. 2022-6-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索