Suppr超能文献

整合放射组学和转录组学分析揭示非小细胞肺癌的亚型特征。

Integrative radiomics and transcriptomics analyses reveal subtype characterization of non-small cell lung cancer.

机构信息

Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.

Department of Radiology, The 909th Hospital. School of Medicine, Xiamen University, Fujian, Zhangzhou, People's Republic of China.

出版信息

Eur Radiol. 2023 Sep;33(9):6414-6425. doi: 10.1007/s00330-023-09503-5. Epub 2023 Feb 24.

Abstract

OBJECTIVES

To assess whether integrative radiomics and transcriptomics analyses could provide novel insights for radiomic features' molecular annotation and effective risk stratification in non-small cell lung cancer (NSCLC).

METHODS

A total of 627 NSCLC patients from three datasets were included. Radiomics features were extracted from segmented 3-dimensional tumour volumes and were z-score normalized for further analysis. In transcriptomics level, 186 pathways and 28 types of immune cells were assessed by using the Gene Set Variation Analysis (GSVA) algorithm. NSCLC patients were categorized into subgroups based on their radiomic features and pathways enrichment scores using consensus clustering. Subgroup-specific radiomics features were used to validate clustering performance and prognostic value. Kaplan-Meier survival analysis with the log-rank test and univariable and multivariable Cox analyses were conducted to explore survival differences among the subgroups.

RESULTS

Three radiotranscriptomics subtypes (RTSs) were identified based on the radiomics and pathways enrichment profiles. The three RTSs were characterized as having specific molecular hallmarks: RTS1 (proliferation subtype), RTS2 (metabolism subtype), and RTS3 (immune activation subtype). RTS3 showed increased infiltration of most immune cells. The RTS stratification strategy was validated in a validation cohort and showed significant prognostic value. Survival analysis demonstrated that the RTS strategy could stratify NSCLC patients according to prognosis (p = 0.009), and the RTS strategy remained an independent prognostic indicator after adjusting for other clinical parameters.

CONCLUSIONS

This radiotranscriptomics study provides a stratification strategy for NSCLC that could provide information for radiomics feature molecular annotation and prognostic prediction.

KEY POINTS

• Radiotranscriptomics subtypes (RTSs) could be used to stratify molecularly heterogeneous patients. • RTSs showed relationships between molecular phenotypes and radiomics features. • The RTS algorithm could be used to identify patients with poor prognosis.

摘要

目的

评估整合放射组学和转录组学分析是否可为非小细胞肺癌(NSCLC)的放射组学特征分子注释和有效风险分层提供新的见解。

方法

共纳入来自三个数据集的 627 例 NSCLC 患者。从分割的三维肿瘤体积中提取放射组学特征,并进行 z 分数归一化以进行进一步分析。在转录组学水平上,使用基因集变异分析(GSVA)算法评估了 186 条途径和 28 种免疫细胞。根据放射组学特征和途径富集评分,使用共识聚类将 NSCLC 患者分为亚组。使用亚组特异性放射组学特征来验证聚类性能和预后价值。使用对数秩检验和单变量及多变量 Cox 分析进行 Kaplan-Meier 生存分析,以探讨亚组之间的生存差异。

结果

根据放射组学和途径富集图谱,确定了三种放射转录组学亚型(RTS)。这三种 RTS 具有特定的分子特征:RTS1(增殖亚型)、RTS2(代谢亚型)和 RTS3(免疫激活亚型)。RTS3 显示大多数免疫细胞的浸润增加。在验证队列中验证了 RTS 分层策略,结果显示具有显著的预后价值。生存分析表明,RTS 策略可根据预后对 NSCLC 患者进行分层(p=0.009),并且在调整其他临床参数后,RTS 策略仍然是独立的预后指标。

结论

本项放射转录组学研究为 NSCLC 提供了一种分层策略,可为放射组学特征的分子注释和预后预测提供信息。

关键点

• RTS 可用于对分子异质性患者进行分层。

• RTS 显示了分子表型与放射组学特征之间的关系。

• RTS 算法可用于识别预后不良的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验