Suppr超能文献

MSCCov19Net:一种用于从咳嗽声中检测 COVID-19 的多分支深度学习模型。

MSCCov19Net: multi-branch deep learning model for COVID-19 detection from cough sounds.

机构信息

Department of Electrical and Electronics Engineering, Trakya University, Edirne, 22030, Turkey.

The Irish Longitudinal Study on Ageing (TILDA), School of Medicine, Trinity College Dublin, Dublin, D02 R590, Ireland.

出版信息

Med Biol Eng Comput. 2023 Jul;61(7):1619-1629. doi: 10.1007/s11517-023-02803-4. Epub 2023 Feb 24.

Abstract

Coronavirus has an impact on millions of lives and has been added to the important pandemics that continue to affect with its variants. Since it is transmitted through the respiratory tract, it has had significant effects on public health and social relations. Isolating people who are COVID positive can minimize the transmission, therefore several exams are proposed to detect the virus such as reverse transcription-polymerase chain reaction (RT-PCR), chest X-Ray, and computed tomography (CT). However, these methods suffer from either a low detection rate or high radiation dosage, along with being expensive. In this study, deep neural network-based model capable of detecting coronavirus from only coughing sound, which is fast, remotely operable and has no harmful side effects, has been proposed. The proposed multi-branch model takes M el Frequency Cepstral Coefficients (MFCC), S pectrogram, and C hromagram as inputs and is abbreviated as MSCCov19Net. The system is trained on publicly available crowdsourced datasets, and tested on two unseen (used only for testing) clinical and non-clinical datasets. Experimental outcomes represent that the proposed system outperforms the 6 popular deep learning architectures on four datasets by representing a better generalization ability. The proposed system has reached an accuracy of 61.5 % in Virufy and 90.4 % in NoCoCoDa for unseen test datasets.

摘要

冠状病毒对数百万人的生活产生了影响,并因其变体而被添加到持续影响的重要大流行中。由于它通过呼吸道传播,因此对公共卫生和社会关系产生了重大影响。隔离 COVID 阳性患者可以最大程度地减少传播,因此提出了几种检查方法来检测病毒,例如逆转录-聚合酶链反应(RT-PCR)、胸部 X 光和计算机断层扫描(CT)。然而,这些方法要么检测率低,要么辐射剂量高,而且价格昂贵。在这项研究中,提出了一种基于深度神经网络的模型,该模型仅从咳嗽声即可检测冠状病毒,它快速、可远程操作且无有害副作用。所提出的多分支模型采用梅尔频率倒谱系数(MFCC)、声谱图和色度图作为输入,简称 MSCCov19Net。该系统在公开的众包数据集上进行训练,并在两个未见(仅用于测试)的临床和非临床数据集上进行测试。实验结果表明,所提出的系统在四个数据集上的表现优于 6 种流行的深度学习架构,表现出更好的泛化能力。该系统在 Virufy 上的未见过测试数据集的准确率达到 61.5%,在 NoCoCoDa 上的准确率达到 90.4%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/651d/9955529/18b2ec6a4afd/11517_2023_2803_Figa_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验