文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医学教育与临床实践中的个性化3D打印低成本模型

Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice.

作者信息

Sun Zhonghua, Wong Yin How, Yeong Chai Hong

机构信息

Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia.

Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth 6845, Australia.

出版信息

Micromachines (Basel). 2023 Feb 16;14(2):464. doi: 10.3390/mi14020464.


DOI:10.3390/mi14020464
PMID:36838164
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9959835/
Abstract

3D printing has been increasingly used for medical applications with studies reporting its value, ranging from medical education to pre-surgical planning and simulation, assisting doctor-patient communication or communication with clinicians, and the development of optimal computed tomography (CT) imaging protocols. This article presents our experience of utilising a 3D-printing facility to print a range of patient-specific low-cost models for medical applications. These models include personalized models in cardiovascular disease (from congenital heart disease to aortic aneurysm, aortic dissection and coronary artery disease) and tumours (lung cancer, pancreatic cancer and biliary disease) based on CT data. Furthermore, we designed and developed novel 3D-printed models, including a 3D-printed breast model for the simulation of breast cancer magnetic resonance imaging (MRI), and calcified coronary plaques for the simulation of extensive calcifications in the coronary arteries. Most of these 3D-printed models were scanned with CT (except for the breast model which was scanned using MRI) for investigation of their educational and clinical value, with promising results achieved. The models were confirmed to be highly accurate in replicating both anatomy and pathology in different body regions with affordable costs. Our experience of producing low-cost and affordable 3D-printed models highlights the feasibility of utilizing 3D-printing technology in medical education and clinical practice.

摘要

3D打印已越来越多地用于医学应用,研究报告了其价值,范围从医学教育到手术前规划与模拟、辅助医患沟通或与临床医生的沟通,以及优化计算机断层扫描(CT)成像协议。本文介绍了我们利用3D打印设备为医学应用打印一系列患者特异性低成本模型的经验。这些模型包括基于CT数据的心血管疾病(从先天性心脏病到主动脉瘤、主动脉夹层和冠状动脉疾病)和肿瘤(肺癌、胰腺癌和胆道疾病)的个性化模型。此外,我们设计并开发了新型3D打印模型,包括用于模拟乳腺癌磁共振成像(MRI)的3D打印乳房模型,以及用于模拟冠状动脉广泛钙化的钙化冠状动脉斑块模型。这些3D打印模型大多通过CT扫描(乳房模型使用MRI扫描)来研究其教育和临床价值,取得了令人满意的结果。这些模型被证实能够以可承受的成本高度精确地复制不同身体部位的解剖结构和病理情况。我们生产低成本且价格合理的3D打印模型的经验凸显了在医学教育和临床实践中利用3D打印技术的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/30af94840679/micromachines-14-00464-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/4a4b5652ca2d/micromachines-14-00464-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/ff8d2c0ffe65/micromachines-14-00464-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/d2b000e91edf/micromachines-14-00464-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/092695743528/micromachines-14-00464-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/dba29805be75/micromachines-14-00464-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/174d920747be/micromachines-14-00464-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/01d776a79898/micromachines-14-00464-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/de2ee0344bfc/micromachines-14-00464-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/cc7fe5c93260/micromachines-14-00464-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/7fd2bfc17124/micromachines-14-00464-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/92a56f461c13/micromachines-14-00464-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/96d9416871e9/micromachines-14-00464-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/631d9eb4d56d/micromachines-14-00464-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/3dc31a5a0d70/micromachines-14-00464-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/5d2f469f6bc7/micromachines-14-00464-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/5509d38d3585/micromachines-14-00464-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/c2999f37812b/micromachines-14-00464-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/413077436d38/micromachines-14-00464-g018a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/474aabfb5d2c/micromachines-14-00464-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/4cd6f4e83e29/micromachines-14-00464-g020a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/9358d596a7f0/micromachines-14-00464-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/33b665ee60c7/micromachines-14-00464-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/382a08dbbfa8/micromachines-14-00464-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/30af94840679/micromachines-14-00464-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/4a4b5652ca2d/micromachines-14-00464-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/ff8d2c0ffe65/micromachines-14-00464-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/d2b000e91edf/micromachines-14-00464-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/092695743528/micromachines-14-00464-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/dba29805be75/micromachines-14-00464-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/174d920747be/micromachines-14-00464-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/01d776a79898/micromachines-14-00464-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/de2ee0344bfc/micromachines-14-00464-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/cc7fe5c93260/micromachines-14-00464-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/7fd2bfc17124/micromachines-14-00464-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/92a56f461c13/micromachines-14-00464-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/96d9416871e9/micromachines-14-00464-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/631d9eb4d56d/micromachines-14-00464-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/3dc31a5a0d70/micromachines-14-00464-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/5d2f469f6bc7/micromachines-14-00464-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/5509d38d3585/micromachines-14-00464-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/c2999f37812b/micromachines-14-00464-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/413077436d38/micromachines-14-00464-g018a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/474aabfb5d2c/micromachines-14-00464-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/4cd6f4e83e29/micromachines-14-00464-g020a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/9358d596a7f0/micromachines-14-00464-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/33b665ee60c7/micromachines-14-00464-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/382a08dbbfa8/micromachines-14-00464-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47b/9959835/30af94840679/micromachines-14-00464-g024.jpg

相似文献

[1]
Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice.

Micromachines (Basel). 2023-2-16

[2]
Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions.

Biomolecules. 2020-11-20

[3]
Use of Three-dimensional Printing in the Development of Optimal Cardiac CT Scanning Protocols.

Curr Med Imaging. 2020

[4]
Three-dimensional printing in congenital heart disease: A systematic review.

J Med Radiat Sci. 2018-9

[5]
Quantitative and qualitative comparison of low- and high-cost 3D-printed heart models.

Quant Imaging Med Surg. 2019-1

[6]
Unsuspected Limitations of 3D Printed Model in Planning of Complex Aortic Aneurysm Endovascular Treatment.

Vasc Endovascular Surg. 2024-8

[7]
3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine.

Micromachines (Basel). 2022-9-22

[8]
Accuracy and feasibility in building a personalized 3D printed femoral pseudoaneurysm model for endovascular training.

PLoS One. 2024

[9]
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease.

Children (Basel). 2023-2-7

[10]
Personalized 3D printed coronary models in coronary stenting.

Quant Imaging Med Surg. 2019-8

引用本文的文献

[1]
Educational use of patient-specific 3D-printed models in dental operative procedures: enhancing clinical training through technology.

BMC Med Educ. 2025-8-29

[2]
Revolutionizing cancer care: Bioprinting prostate cancer stem cells for targeted treatments.

World J Clin Oncol. 2025-7-24

[3]
3D printed vitamin D impregnated catheters for magnetic resonance-guided interventions: proof of concept and imaging characteristics.

3D Print Med. 2025-6-13

[4]
The role of three-dimensional printing models in medical education: a systematic review and meta-analysis of randomized controlled trials.

BMC Med Educ. 2025-6-3

[5]
Knowledge Mapping and Global Trends in Simulation in Medical Education: Bibliometric and Visual Analysis.

JMIR Med Educ. 2025-3-26

[6]
Application of digital model of mixed reality dynamic tracking technique in oral and maxillofacial surgery: a basic research.

Hua Xi Kou Qiang Yi Xue Za Zhi. 2024-12-1

[7]
Virtual and augmented reality systems and three-dimensional printing of the renal model-novel trends to guide preoperative planning for renal cancer.

Asian J Urol. 2024-10

[8]
Investigation of the Clinical Value of Four Visualization Modalities for Congenital Heart Disease.

J Cardiovasc Dev Dis. 2024-9-5

[9]
Cardiovascular computed tomography in cardiovascular disease: An overview of its applications from diagnosis to prediction.

J Geriatr Cardiol. 2024-5-28

[10]
Integration of case-based learning and three-dimensional printing for tetralogy of fallot instruction in clinical medical undergraduates: a randomized controlled trial.

BMC Med Educ. 2024-5-24

本文引用的文献

[1]
Manufacturing flexible vascular models for cardiovascular surgery planning and endovascular procedure simulations: An approach to segmentation and post-processing with open-source software and end-user 3D printers.

Int J Bioprint. 2023-1-13

[2]
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease.

Children (Basel). 2023-2-7

[3]
Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease.

Biomolecules. 2022-10-24

[4]
3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine.

Micromachines (Basel). 2022-9-22

[5]
Preliminary application of three-dimensional printing in congenital uterine anomalies based on three-dimensional transvaginal ultrasonographic data.

BMC Womens Health. 2022-7-14

[6]
3D-printed heart models for hands-on training in pediatric cardiology - the future of modern learning and teaching?

GMS J Med Educ. 2022

[7]
Pre-Interventional 3D-Printing-Assisted Planning of Flow Disrupter Implantation for the Treatment of an Intracranial Aneurysm.

J Clin Med. 2022-5-24

[8]
Three-dimensional printing, holograms, computational modelling, and artificial intelligence for adult congenital heart disease care: an exciting future.

Eur Heart J. 2022-7-21

[9]
The role of 3D printed heart models in immediate and long-term knowledge acquisition in medical education.

Rev Cardiovasc Med. 2022-1-17

[10]
3D surgical planning of pediatric tumors: a review.

Int J Comput Assist Radiol Surg. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索