Suppr超能文献

使用具有多模态表示和整合的深度学习架构进行泛癌生存预测。

Pancancer survival prediction using a deep learning architecture with multimodal representation and integration.

作者信息

Fan Ziling, Jiang Zhangqi, Liang Hengyu, Han Chao

机构信息

CellEvoX Biotechnology Co. Ltd., Shenzhen, Guangdong 518000, China.

Fosun Pharma, Shanghai 200233, China.

出版信息

Bioinform Adv. 2023 Jan 23;3(1):vbad006. doi: 10.1093/bioadv/vbad006. eCollection 2023.

Abstract

MOTIVATION

Use of multi-omics data carrying comprehensive signals about the disease is strongly desirable for understanding and predicting disease progression, cancer particularly as a serious disease with a high mortality rate. However, recent methods currently fail to effectively utilize the multi-omics data for cancer survival prediction and thus significantly limiting the accuracy of survival prediction using omics data.

RESULTS

In this work, we constructed a deep learning model with multimodal representation and integration to predict the survival of patients using multi-omics data. We first developed an unsupervised learning part to extract high-level feature representations from omics data of different modalities. Then, we used an attention-based method to integrate feature representations, produced by the unsupervised learning part, into a single compact vector and finally we fed the vector into fully connected layers for survival prediction. We used multimodal data to train the model and predict pancancer survival, and the results show that using multimodal data can lead to higher prediction accuracy compared to using single modal data. Furthermore, we used the concordance index and the 5-fold cross-validation method for comparing our proposed method with current state-of-the-art methods and our results show that our model achieves better performance on the majority of cancer types in our testing datasets.

AVAILABILITY AND IMPLEMENTATION

https://github.com/ZhangqiJiang07/MultimodalSurvivalPrediction.

SUPPLEMENTARY INFORMATION

Supplementary data are available at online.

摘要

动机

利用携带关于疾病的全面信号的多组学数据对于理解和预测疾病进展非常有必要,尤其是癌症这种具有高死亡率的严重疾病。然而,目前的方法未能有效利用多组学数据进行癌症生存预测,从而显著限制了使用组学数据进行生存预测的准确性。

结果

在这项工作中,我们构建了一个具有多模态表示和整合功能的深度学习模型,以使用多组学数据预测患者的生存情况。我们首先开发了一个无监督学习部分,从不同模态的组学数据中提取高级特征表示。然后,我们使用基于注意力的方法将无监督学习部分产生的特征表示整合到一个单一的紧凑向量中,最后将该向量输入到全连接层进行生存预测。我们使用多模态数据训练模型并预测泛癌生存情况,结果表明与使用单模态数据相比,使用多模态数据可以导致更高的预测准确性。此外,我们使用一致性指数和5折交叉验证方法将我们提出的方法与当前的最先进方法进行比较,结果表明我们的模型在测试数据集中的大多数癌症类型上都取得了更好的性能。

可用性和实现

https://github.com/ZhangqiJiang07/MultimodalSurvivalPrediction。

补充信息

补充数据可在网上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e62f/9945067/818a8031c378/vbad006f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验