Suppr超能文献

射频噬菌体病毒体:用随机森林模型对噬菌体病毒体蛋白进行分类

RF_phage virion: Classification of phage virion proteins with a random forest model.

作者信息

Zhang Yanqin, Li Zhiyuan

机构信息

School of Finance, Xuzhou University of Technology, Xuzhou, China.

School of Artificial Intelligence and Software College, Jiangsu Normal University Kewen College, Xuzhou, China.

出版信息

Front Genet. 2023 Feb 8;13:1103783. doi: 10.3389/fgene.2022.1103783. eCollection 2022.

Abstract

Phages play essential roles in biological procession, and the virion proteins encoded by the phage genome constitute critical elements of the assembled phage particle. This study uses machine learning methods to classify phage virion proteins. We proposed a novel approach, RF_phage virion, for the effective classification of the virion and non-virion proteins. The model uses four protein sequence coding methods as features, and the random forest algorithm was employed to solve the classification problem. The performance of the RF_phage virion model was analyzed by comparing the performance of this algorithm with that of classical machine learning methods. The proposed method achieved a specificity (Sp) of 93.37%%, sensitivity (Sn) of 90.30%, accuracy (Acc) of 91.84%, Matthews correlation coefficient (MCC) of .8371, and an F1 score of .9196.

摘要

噬菌体在生物过程中发挥着重要作用,噬菌体基因组编码的病毒粒子蛋白构成了组装好的噬菌体颗粒的关键元件。本研究使用机器学习方法对噬菌体病毒粒子蛋白进行分类。我们提出了一种名为RF_phage virion的新方法,用于有效区分病毒粒子蛋白和非病毒粒子蛋白。该模型使用四种蛋白质序列编码方法作为特征,并采用随机森林算法解决分类问题。通过将该算法与经典机器学习方法的性能进行比较,分析了RF_phage virion模型的性能。所提出的方法特异性(Sp)达到93.37%,灵敏度(Sn)为90.30%,准确率(Acc)为91.84%,马修斯相关系数(MCC)为0.8371,F1分数为0.9196。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa9/9945117/f24de5fd8590/fgene-13-1103783-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验