Suppr超能文献

通过催化-氧化还原耦合的共价有机框架||钒酸铋光电器件实现解耦人工光合作用

Decoupled Artificial Photosynthesis via a Catalysis-Redox Coupled COF||BiVO Photoelectrochemical Device.

作者信息

Lin Wan, Lin Jing, Zhang Xiang, Zhang Linlin, Borse Rahul Anil, Wang Yaobing

机构信息

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

J Am Chem Soc. 2023 Aug 16;145(32):18141-18147. doi: 10.1021/jacs.3c06687. Epub 2023 Aug 7.

Abstract

Artificial photosynthesis is an attractive approach to direct fuel production from sunlight. However, the simultaneous O evolution reaction (OER) and CO reduction reaction (CDRR) present challenges for product separation and safety. Herein, we propose a strategy to temporally decouple artificial photosynthesis through photoelectrochemical energy storage. We utilized a covalent organic framework (DTCo-COF) with redox-active electron donors (-C-OH moieties) and catalytically active electron acceptors (cobalt-porphyrin) to enable reversible -C-OH/-C═O redox reaction and redox-promoted CO-to-CO photoreduction. Integrating the COF photocathode with an OER photoanode in a photoelectrochemical device allows the effective storage of OER-generated electrons and protons by -C═O groups. These stored charges can be later employed for CDRR while regenerating -C═O to complete the loop, thus enabling on-demand and separate production of O or solar fuels. Our work sets the stage for advancements in decoupled artificial photosynthesis and the development of more efficient solar fuel production technologies.

摘要

人工光合作用是一种利用阳光直接生产燃料的极具吸引力的方法。然而,同时进行的析氧反应(OER)和二氧化碳还原反应(CDRR)给产物分离和安全性带来了挑战。在此,我们提出一种通过光电化学储能在时间上解耦人工光合作用的策略。我们利用了一种具有氧化还原活性电子供体(-C-OH基团)和催化活性电子受体(钴卟啉)的共价有机框架(DTCo-COF),以实现可逆的-C-OH/-C═O氧化还原反应以及氧化还原促进的CO到CO₂光还原。在光电化学装置中将COF光阴极与OER光阳极集成,能够使-C═O基团有效地存储OER产生的电子和质子。这些存储的电荷随后可用于CDRR,同时再生-C═O以完成循环,从而实现按需且分别生产O₂或太阳能燃料。我们的工作为解耦人工光合作用的进展以及更高效太阳能燃料生产技术的发展奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验