文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用灵活可穿戴设备进行 3D 脊柱姿势跟踪来识别日常生活活动。

Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking.

机构信息

Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Lower Saxony, Germany.

Ubiquitous Computing Lab, Department of Computer Science, Konstanz University of Applied Sciences, 78462 Konstanz, Baden-Württemberg, Germany.

出版信息

Sensors (Basel). 2023 Feb 12;23(4):2066. doi: 10.3390/s23042066.


DOI:10.3390/s23042066
PMID:36850664
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9961818/
Abstract

The World Health Organization recognizes physical activity as an influencing domain on quality of life. Monitoring, evaluating, and supervising it by wearable devices can contribute to the early detection and progress assessment of diseases such as Alzheimer's, rehabilitation, and exercises in telehealth, as well as abrupt events such as a fall. In this work, we use a non-invasive and non-intrusive flexible wearable device for 3D spine pose measurement to monitor and classify physical activity. We develop a comprehensive protocol that consists of 10 indoor, 4 outdoor, and 8 transition states activities in three categories of static, dynamic, and transition in order to evaluate the applicability of the flexible wearable device in human activity recognition. We implement and compare the performance of three neural networks: long short-term memory (LSTM), convolutional neural network (CNN), and a hybrid model (CNN-LSTM). For ground truth, we use an accelerometer and strips data. LSTM reached an overall classification accuracy of 98% for all activities. The CNN model with accelerometer data delivered better performance in lying down (100%), static (standing = 82%, sitting = 75%), and dynamic (walking = 100%, running = 100%) positions. Data fusion improved the outputs in standing (92%) and sitting (94%), while LSTM with the strips data yielded a better performance in bending-related activities (bending forward = 49%, bending backward = 88%, bending right = 92%, and bending left = 100%), the combination of data fusion and principle components analysis further strengthened the output (bending forward = 100%, bending backward = 89%, bending right = 100%, and bending left = 100%). Moreover, the LSTM model detected the first transition state that is similar to fall with the accuracy of 84%. The results show that the wearable device can be used in a daily routine for activity monitoring, recognition, and exercise supervision, but still needs further improvement for fall detection.

摘要

世界卫生组织将身体活动视为影响生活质量的一个因素。使用可穿戴设备对其进行监测、评估和监督,可以帮助我们及早发现阿尔茨海默病等疾病,并对其进行评估和康复治疗,同时还能监测远程医疗中的锻炼活动和跌倒等突发状况。在这项工作中,我们使用一种非侵入式、非干扰式的柔性可穿戴设备来测量 3D 脊柱姿势,以监测和分类身体活动。我们制定了一个全面的方案,该方案包括 10 种室内活动、4 种室外活动和 8 种过渡状态活动,分为静态、动态和过渡三个类别,以评估柔性可穿戴设备在人体活动识别中的适用性。我们实现并比较了三种神经网络的性能:长短期记忆网络(LSTM)、卷积神经网络(CNN)和混合模型(CNN-LSTM)。对于地面实况,我们使用加速度计和条带数据。LSTM 对所有活动的整体分类准确率达到了 98%。在躺下(100%)、静态(站立=82%,坐着=75%)和动态(行走=100%,跑步=100%)位置,使用加速度计数据的 CNN 模型表现更好。数据融合提高了站立(92%)和坐着(94%)的输出,而使用条带数据的 LSTM 则在弯曲相关活动(前屈=49%,后屈=88%,右屈=92%,左屈=100%)中表现更好,数据融合和主成分分析的组合进一步增强了输出(前屈=100%,后屈=89%,右屈=100%,左屈=100%)。此外,LSTM 模型以 84%的准确率检测到了类似于跌倒的第一个过渡状态。结果表明,该可穿戴设备可用于日常活动监测、识别和运动监督,但仍需要进一步改进以实现跌倒检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/72726db525ef/sensors-23-02066-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/b973797e8105/sensors-23-02066-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/98d582accae7/sensors-23-02066-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/1ec4653c1a56/sensors-23-02066-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/02fcba14d769/sensors-23-02066-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/5b05185a3bf2/sensors-23-02066-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/baca88d95736/sensors-23-02066-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/7436e0e19f0a/sensors-23-02066-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/ba8a1375bd07/sensors-23-02066-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/59a6e1e0aa16/sensors-23-02066-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/93ec8dda458e/sensors-23-02066-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/8949214dfff8/sensors-23-02066-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/b6ff1441eadf/sensors-23-02066-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/f0a124205852/sensors-23-02066-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/05256e0ab8b1/sensors-23-02066-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/72726db525ef/sensors-23-02066-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/b973797e8105/sensors-23-02066-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/98d582accae7/sensors-23-02066-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/1ec4653c1a56/sensors-23-02066-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/02fcba14d769/sensors-23-02066-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/5b05185a3bf2/sensors-23-02066-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/baca88d95736/sensors-23-02066-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/7436e0e19f0a/sensors-23-02066-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/ba8a1375bd07/sensors-23-02066-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/59a6e1e0aa16/sensors-23-02066-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/93ec8dda458e/sensors-23-02066-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/8949214dfff8/sensors-23-02066-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/b6ff1441eadf/sensors-23-02066-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/f0a124205852/sensors-23-02066-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/05256e0ab8b1/sensors-23-02066-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e406/9961818/72726db525ef/sensors-23-02066-g015.jpg

相似文献

[1]
Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking.

Sensors (Basel). 2023-2-12

[2]
A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.

Sensors (Basel). 2023-6-26

[3]
Exploring Orientation Invariant Heuristic Features with Variant Window Length of 1D-CNN-LSTM in Human Activity Recognition.

Biosensors (Basel). 2022-7-21

[4]
Revolutionizing health monitoring: Integrating transformer models with multi-head attention for precise human activity recognition using wearable devices.

Technol Health Care. 2025

[5]
Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.

Sensors (Basel). 2021-12-11

[6]
Single Accelerometer to Recognize Human Activities Using Neural Networks.

J Biomech Eng. 2023-6-1

[7]
IMU-Based Energy Expenditure Estimation for Various Walking Conditions Using a Hybrid CNN-LSTM Model.

Sensors (Basel). 2024-1-10

[8]
Automated Detection of Rehabilitation Exercise by Stroke Patients Using 3-Layer CNN-LSTM Model.

J Healthc Eng. 2022

[9]
A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable Inertial Sensors.

Front Bioeng Biotechnol. 2020-2-12

[10]
Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.

Appl Ergon. 2021-10

引用本文的文献

[1]
Wearable Spine Tracker vs. Video-Based Pose Estimation for Human Activity Recognition.

Sensors (Basel). 2025-6-18

[2]
Recognition and Scoring Physical Exercises via Temporal and Relative Analysis of Skeleton Nodes Extracted from the Kinect Sensor.

Sensors (Basel). 2024-10-18

[3]
Designing a Hybrid Energy-Efficient Harvesting System for Head- or Wrist-Worn Healthcare Wearable Devices.

Sensors (Basel). 2024-8-12

[4]
Intelligent systems for sitting posture monitoring and anomaly detection: an overview.

J Neuroeng Rehabil. 2024-2-20

[5]
A wearable-based sports health monitoring system using CNN and LSTM with self-attentions.

PLoS One. 2023-10-11

本文引用的文献

[1]
Integrated Sensing Devices for Disease Prevention and Health Alerts in Smart Homes.

Stud Health Technol Inform. 2022-5-20

[2]
Unobtrusive Health Monitoring in Private Spaces: The Smart Home.

Sensors (Basel). 2021-1-28

[3]
Daily functioning and dementia.

Dement Neuropsychol. 2020

[4]
A systematic review of the accuracy of sleep wearable devices for estimating sleep onset.

Sleep Med Rev. 2020-2

[5]
Unobtrusive Monitoring the Daily Activity Routine of Elderly People Living Alone, with Low-Cost Binary Sensors.

Sensors (Basel). 2019-5-16

[6]
Association between physical activity and dementia's risk factors in patients with Parkinson's disease.

J Neural Transm (Vienna). 2019-2-12

[7]
The role of wearables in spinal posture analysis: a systematic review.

BMC Musculoskelet Disord. 2019-2-8

[8]
Pain Intensity, Disability, and Quality of Life in Patients with Chronic Low Back Pain: Does Age Matter?

Pain Med. 2019-3-1

[9]
Wearable technology for spine movement assessment: A systematic review.

J Biomech. 2017-11-7

[10]
Wearable Sensors for Remote Health Monitoring.

Sensors (Basel). 2017-1-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索