Suppr超能文献

CeDAR:整合细胞类型层次结构可提高批量组学数据中细胞类型特异性差异分析的能力。

CeDAR: incorporating cell type hierarchy improves cell type-specific differential analyses in bulk omics data.

机构信息

Department of Biostatistics and Bioinformatics, Emory University, GA, 30322, Atlanta, USA.

Department of Biostatistics, The University of MD Anderson Cancer Center, 77030, Houston, TX, USA.

出版信息

Genome Biol. 2023 Feb 28;24(1):37. doi: 10.1186/s13059-023-02857-5.

Abstract

Bulk high-throughput omics data contain signals from a mixture of cell types. Recent developments of deconvolution methods facilitate cell type-specific inferences from bulk data. Our real data exploration suggests that differential expression or methylation status is often correlated among cell types. Based on this observation, we develop a novel statistical method named CeDAR to incorporate the cell type hierarchy in cell type-specific differential analyses of bulk data. Extensive simulation and real data analyses demonstrate that this approach significantly improves the accuracy and power in detecting cell type-specific differential signals compared with existing methods, especially in low-abundance cell types.

摘要

批量高通量组学数据包含来自多种细胞类型混合的信号。解卷积方法的最新发展促进了从批量数据中进行特定于细胞类型的推断。我们的真实数据探索表明,差异表达或甲基化状态在细胞类型之间通常是相关的。基于这一观察结果,我们开发了一种名为 CeDAR 的新统计方法,该方法将细胞类型层次结构纳入批量数据的特定于细胞类型的差异分析中。广泛的模拟和真实数据分析表明,与现有方法相比,这种方法在检测特定于细胞类型的差异信号的准确性和功效方面有显著提高,尤其是在低丰度细胞类型中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24af/9972684/a0c65f5233e8/13059_2023_2857_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验