Suppr超能文献

在评估单细胞 RNA-seq 聚类时考虑细胞类型层次结构。

Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering.

机构信息

Department of Biostatistics, Brown University, Providence, 02806, RI, USA.

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, 30322, GA, USA.

出版信息

Genome Biol. 2020 May 25;21(1):123. doi: 10.1186/s13059-020-02027-x.

Abstract

Cell clustering is one of the most common routines in single cell RNA-seq data analyses, for which a number of specialized methods are available. The evaluation of these methods ignores an important biological characteristic that the structure for a population of cells is hierarchical, which could result in misleading evaluation results. In this work, we develop two new metrics that take into account the hierarchical structure of cell types. We illustrate the application of the new metrics in constructed examples as well as several real single cell datasets and show that they provide more biologically plausible results.

摘要

细胞聚类是单细胞 RNA-seq 数据分析中最常见的操作之一,为此已经开发了许多专门的方法。这些方法的评估忽略了一个重要的生物学特征,即细胞群体的结构是层次化的,这可能导致评估结果产生误导。在这项工作中,我们开发了两个新的指标,它们考虑了细胞类型的层次结构。我们在构建的示例以及几个真实的单细胞数据集上展示了新指标的应用,并表明它们提供了更合理的生物学结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea44/7249323/5dd166396e5b/13059_2020_2027_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验