Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Department of Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.
J Am Med Inform Assoc. 2023 Apr 19;30(5):915-922. doi: 10.1093/jamia/ocad028.
Electronic health record (EHR) data are a valuable resource for population health research but lack critical information such as relationships between individuals. Emergency contacts in EHRs can be used to link family members, creating a population that is more representative of a community than traditional family cohorts.
We revised a published algorithm: relationship inference from the electronic health record (RIFTEHR). Our version, Pythonic RIFTEHR (P-RIFTEHR), identifies a patient's emergency contacts, matches them to existing patients (when available) using network graphs, checks for conflicts, and infers new relationships. P-RIFTEHR was run on December 15, 2021 in the Northwestern Medicine Electronic Data Warehouse (NMEDW) on approximately 2.95 million individuals and was validated using the existing link between children born at NM hospitals and their mothers. As proof-of-concept, we modeled the association between parent and child obesity using logistic regression.
The P-RIFTEHR algorithm matched 1 157 454 individuals in 448 278 families. The median family size was 2, the largest was 32 persons, and 247 families spanned 4 generations or more. Validation of the mother-child pairs resulted in 95.1% sensitivity. Children were 2 times more likely to be obese if a parent is obese (OR: 2.30; 95% CI, 2.23-2.37).
P-RIFTEHR can identify familiar relationships in a large, diverse population in an integrated health system. Estimates of parent-child inheritability of obesity using family structures identified by the algorithm were consistent with previously published estimates from traditional cohort studies.
电子健康记录(EHR)数据是人群健康研究的宝贵资源,但缺乏关键信息,例如个体之间的关系。EHR 中的紧急联系人可用于关联家庭成员,从而创建一个比传统家庭队列更能代表社区的人群。
我们修改了已发表的算法:从电子健康记录推断关系(RIFTEHR)。我们的版本,即 Pythonic RIFTEHR(P-RIFTEHR),可识别患者的紧急联系人,使用网络图将其与现有患者(如有)匹配,检查冲突并推断新关系。P-RIFTEHR 于 2021 年 12 月 15 日在西北医学电子数据仓库(NMEDW)中运行,约有 295 万人,使用 NM 医院出生的儿童与其母亲之间现有的联系进行了验证。作为概念验证,我们使用逻辑回归模型来模拟父母和子女肥胖之间的关联。
P-RIFTEHR 算法匹配了 448278 个家庭中的 1157454 个人。家庭的中位数规模为 2,最大规模为 32 人,247 个家庭跨越 4 代或更多代。对母子对的验证产生了 95.1%的灵敏度。如果父母肥胖,孩子肥胖的可能性是父母不肥胖的孩子的 2 倍(OR:2.30;95%CI,2.23-2.37)。
P-RIFTEHR 可在集成式医疗系统中识别大型、多样化人群中的熟悉关系。使用算法识别的家庭结构估算肥胖的父母与子女遗传可能性与传统队列研究的先前发表的估计值一致。