Park Yun Ji, Kwon Do Yeon, Koo Song Yi, Truong To Quyen, Hong Sung-Chul, Choi Jaeyoung, Moon Jinyoung, Kim Sang Min
Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea.
Euseed Inc, Daejeon, Republic of Korea.
Front Plant Sci. 2023 Feb 13;14:1140509. doi: 10.3389/fpls.2023.1140509. eCollection 2023.
, a leafy edible plant found in damp shady regions, has been used as an herbal medicine and is also consumed as a horticultural crop. In this study, we investigated the physiological and transcriptomic changes, especially those involved in phenylpropanoid biosynthesis, induced by severe drought stress in plants. A distinguishing characteristic of is a color change from green to purple due to anthocyanin biosynthesis. We chromatographically isolated and identified two anthocyanins and two flavones upregulated by drought stress using liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses in this plant for the first time. In contrast, all types of caffeoylquinic acids (CQAs) and flavonol contents were decreased under drought stress. Further, we performed RNA sequencing to examine the molecular changes in these phenolic compounds at the transcriptome level. In an overview of drought-inducible responses, we identified 2,105 hits for 516 distinct transcripts as drought-responsive genes. Moreover, differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis accounted for the greatest number of both up- and downregulated DEGs by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. We identified 24 meaningful DEGs based on the regulation of phenylpropanoid biosynthetic genes. Potential drought-responsive genes included upregulated flavone synthase (, TRINITY DN31661 c0 g1 i1) and anthocyanin 5--glucosyltransferase (, TRINITY DN782 c0 g1 i1), which could contribute to the high levels of flavones and anthocyanins under drought stress in . In addition, the downregulated shikimate -hydroxycinnamolytransferase (, TRINITY DN31661 c0 g1 i1) and hydroxycinnamoyl-CoA quinate/shikimate transferase (, TRINITY DN15180 c0 g1 i1) genes led to a reduction in CQAs. Only one or two BLASTP hits for were obtained for six different Asteraceae species. It is possible that the HCT gene plays a crucial role in CQAs biosynthesis in these species. These findings expand our knowledge of the response mechanisms to drought stress, particularly regarding the regulation of key phenylpropanoid biosynthetic genes in .
[植物名称]是一种生长在潮湿阴凉地区的可食用多叶植物,一直被用作草药,也作为园艺作物食用。在本研究中,我们调查了[植物名称]在严重干旱胁迫下所诱导的生理和转录组变化,特别是那些参与苯丙烷生物合成的变化。[植物名称]的一个显著特征是由于花青素生物合成导致颜色从绿色变为紫色。我们首次使用液相色谱 - 质谱联用和核磁共振分析,通过色谱法分离并鉴定了该植物中两种因干旱胁迫而上调的花青素和两种黄酮。相比之下,在干旱胁迫下所有类型的咖啡酰奎宁酸(CQAs)和黄酮醇含量均下降。此外,我们进行了RNA测序,以在转录组水平检查这些酚类化合物的分子变化。在干旱诱导反应的概述中,我们将516个不同转录本中的2105个命中结果鉴定为干旱响应基因。此外,通过京都基因与基因组百科全书富集分析,与苯丙烷生物合成相关的差异表达基因(DEGs)在上调和下调的DEGs中占比最大。我们基于苯丙烷生物合成基因的调控鉴定了24个有意义的DEGs。潜在的干旱响应基因包括上调的黄酮合酶([基因名称1],TRINITY DN31661 c0 g1 i1)和花青素5 - [糖基名称] - 葡萄糖基转移酶([基因名称2],TRINITY DN782 c0 g1 i1),它们可能导致[植物名称]在干旱胁迫下黄酮和花青素水平升高。此外,下调的莽草酸 - [羟基肉桂酰名称]转移酶([基因名称3],TRINITY DN31661 c0 g1 i1)和羟基肉桂酰辅酶A奎宁酸/莽草酸转移酶([基因名称4],TRINITY DN15180 c0 g1 i1)基因导致CQAs减少。对于六种不同的菊科物种,仅获得了一两个[基因名称5]的BLASTP命中结果。HCT基因可能在这些物种的CQAs生物合成中起关键作用。这些发现扩展了我们对干旱胁迫响应机制的认识,特别是关于[植物名称]中关键苯丙烷生物合成基因的调控。