Suppr超能文献

研究细胞系作为上皮性卵巢癌主要亚型模型的适用性。

Investigating the suitability of cell lines as models for the major subtypes of epithelial ovarian cancer.

作者信息

McCabe Aideen, Zaheed Oza, McDade Simon Samuel, Dean Kellie

机构信息

School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.

The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland.

出版信息

Front Cell Dev Biol. 2023 Feb 13;11:1104514. doi: 10.3389/fcell.2023.1104514. eCollection 2023.

Abstract

Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy, accounting for over 200,000 deaths worldwide per year. EOC is a highly heterogeneous disease, classified into five major histological subtypes-high-grade serous (HGSOC), clear cell (CCOC), endometrioid (ENOC), mucinous (MOC) and low-grade serous (LGSOC) ovarian carcinomas. Classification of EOCs is clinically beneficial, as the various subtypes respond differently to chemotherapy and have distinct prognoses. Cell lines are often used as models for cancer, allowing researchers to explore pathophysiology in a relatively cheap and easy to manipulate system. However, most studies that make use of EOC cell lines fail to recognize the importance of subtype. Furthermore, the similarity of cell lines to their cognate primary tumors is often ignored. Identification of cell lines with high molecular similarity to primary tumors is needed in order to better guide pre-clinical EOC research and to improve development of targeted therapeutics and diagnostics for each distinctive subtype. This study aims to generate a reference dataset of cell lines representative of the major EOC subtypes. We found that non-negative matrix factorization (NMF) optimally clustered fifty-six cell lines into five groups, putatively corresponding to each of the five EOC subtypes. These clusters validated previous histological groupings, while also classifying other previously unannotated cell lines. We analysed the mutational and copy number landscapes of these lines to investigate whether they harboured the characteristic genomic alterations of each subtype. Finally we compared the gene expression profiles of cell lines with 93 primary tumor samples stratified by subtype, to identify lines with the highest molecular similarity to HGSOC, CCOC, ENOC, and MOC. In summary, we examined the molecular features of both EOC cell lines and primary tumors of multiple subtypes. We recommend a reference set of cell lines most suited to represent four different subtypes of EOC for both and studies. We also identify lines displaying poor overall molecular similarity to EOC tumors, which we argue should be avoided in pre-clinical studies. Ultimately, our work emphasizes the importance of choosing suitable cell line models to maximise clinical relevance of experiments.

摘要

上皮性卵巢癌(EOC)是最致命的妇科恶性肿瘤,每年在全球导致超过20万人死亡。EOC是一种高度异质性疾病,分为五种主要组织学亚型——高级别浆液性(HGSOC)、透明细胞(CCOC)、子宫内膜样(ENOC)、黏液性(MOC)和低级别浆液性(LGSOC)卵巢癌。EOC的分类在临床上具有重要意义,因为不同亚型对化疗的反应不同,预后也有所差异。细胞系常被用作癌症模型,使研究人员能够在相对廉价且易于操作的系统中探索病理生理学。然而,大多数利用EOC细胞系的研究未能认识到亚型的重要性。此外,细胞系与其同源原发性肿瘤的相似性常常被忽视。为了更好地指导临床前EOC研究,并改善针对每种独特亚型的靶向治疗和诊断方法的开发,需要鉴定与原发性肿瘤具有高分子相似性的细胞系。本研究旨在生成一个代表主要EOC亚型的细胞系参考数据集。我们发现非负矩阵分解(NMF)将56个细胞系最佳地聚类为五组,推测分别对应于五种EOC亚型中的每一种。这些聚类验证了先前的组织学分组,同时也对其他先前未注释的细胞系进行了分类。我们分析了这些细胞系的突变和拷贝数图谱,以研究它们是否具有每种亚型的特征性基因组改变。最后,我们将细胞系的基因表达谱与按亚型分层的93个原发性肿瘤样本进行比较,以鉴定与HGSOC、CCOC、ENOC和MOC具有最高分子相似性的细胞系。总之,我们研究了多种亚型的EOC细胞系和原发性肿瘤的分子特征。我们推荐一组最适合代表四种不同EOC亚型的细胞系参考集,用于临床前和临床研究。我们还鉴定出与EOC肿瘤总体分子相似性较差的细胞系,我们认为在临床前研究中应避免使用这些细胞系。最终,我们的工作强调了选择合适的细胞系模型以最大化实验临床相关性的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a15/9969113/417f8d66e935/fcell-11-1104514-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验