Suppr超能文献

Komagataeibacter hansenii 利用阿拉伯糖醇生产的透明质酸的结构特性。

Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii using arabitol.

机构信息

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America.

Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States of America.

出版信息

Biomater Adv. 2023 May;148:213345. doi: 10.1016/j.bioadv.2023.213345. Epub 2023 Feb 17.

Abstract

Bacterial cellulose (BC) exhibits beneficial properties for use in biomedical applications but is limited by its lack of tunable transparency capabilities. To overcome this deficiency, a novel method to synthesize transparent BC materials using an alternative carbon source, namely arabitol, was developed. Characterization of the BC pellicles was performed for yield, transparency, surface morphology, and molecular assembly. Transparent BC was produced using mixtures of glucose and arabitol. Zero percent arabitol pellicles exhibited 25% light transmittance, which increased with increasing arabitol concentration through to 75% light transmittance. While transparency increased, overall BC yield was maintained indicating that the altered transparency may be induced on a micro-scale rather than a macro-scale. Significant differences in fiber diameter and the presence of aromatic signatures were observed. Overall, this research outlines methods for producing BC with tunable optical transparency, while also bringing new insight to insoluble components of exopolymers produced by Komagataeibacter hansenii.

摘要

细菌纤维素(BC)具有有益于生物医学应用的特性,但缺乏可调透光能力的限制。为了克服这一不足,开发了一种使用替代碳源阿拉伯糖醇合成透明 BC 材料的新方法。对 BC 薄膜的产率、透明度、表面形貌和分子组装进行了表征。使用葡萄糖和阿拉伯糖醇的混合物生产透明 BC。零浓度的阿拉伯糖醇薄膜的透光率为 25%,随着阿拉伯糖醇浓度的增加,透光率增加到 75%。虽然透光率增加,但 BC 的总产率保持不变,这表明这种改变的透明度可能是在微观尺度上而不是宏观尺度上产生的。观察到纤维直径和芳香特征的存在有显著差异。总的来说,这项研究概述了生产具有可调光学透明度的 BC 的方法,同时也为 Komagataeibacter hansenii 产生的胞外聚合物的不溶性成分提供了新的见解。

相似文献

1
Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii using arabitol.
Biomater Adv. 2023 May;148:213345. doi: 10.1016/j.bioadv.2023.213345. Epub 2023 Feb 17.
2
Effects of pullulan additive and co-culture of Aureobasidium pullulans on bacterial cellulose produced by Komagataeibacter hansenii.
Bioprocess Biosyst Eng. 2022 Mar;45(3):573-587. doi: 10.1007/s00449-021-02680-x. Epub 2022 Feb 20.
3
Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769.
Appl Microbiol Biotechnol. 2019 Jul;103(13):5339-5353. doi: 10.1007/s00253-019-09846-4. Epub 2019 Apr 29.
5
Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea.
Biotechnol Appl Biochem. 2019 Jan;66(1):108-118. doi: 10.1002/bab.1703. Epub 2018 Nov 29.
6
Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.
Carbohydr Polym. 2016 Nov 5;152:841-849. doi: 10.1016/j.carbpol.2016.06.049. Epub 2016 Jun 15.
7
Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin.
Carbohydr Polym. 2020 Oct 15;246:116632. doi: 10.1016/j.carbpol.2020.116632. Epub 2020 Jun 16.
8
Novel bacterial cellulose membrane biosynthesized by a new and highly efficient producer Komagataeibacter rhaeticus TJPU03.
Carbohydr Res. 2020 Jul;493:108030. doi: 10.1016/j.carres.2020.108030. Epub 2020 May 12.
9
Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016.
Int J Biol Macromol. 2020 Nov 1;162:1597-1604. doi: 10.1016/j.ijbiomac.2020.08.049. Epub 2020 Aug 8.
10
Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.
Carbohydr Polym. 2016 Jun 25;144:33-40. doi: 10.1016/j.carbpol.2016.02.025. Epub 2016 Feb 10.

本文引用的文献

1
Production of bacterial cellulose from glycerol: the current state and perspectives.
Bioresour Bioprocess. 2021 Nov 29;8(1):116. doi: 10.1186/s40643-021-00468-1.
5
Acetan and Acetan-Like Polysaccharides: Genetics, Biosynthesis, Structure, and Viscoelasticity.
Polymers (Basel). 2021 Mar 7;13(5):815. doi: 10.3390/polym13050815.
6
Reconstruction, verification and in-silico analysis of a genome-scale metabolic model of bacterial cellulose producing Komagataeibacter xylinus.
Bioprocess Biosyst Eng. 2020 Jun;43(6):1017-1026. doi: 10.1007/s00449-020-02299-4. Epub 2020 Feb 1.
8
Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications.
Biomacromolecules. 2020 May 11;21(5):1802-1811. doi: 10.1021/acs.biomac.9b01724. Epub 2020 Jan 30.
9
Highly transparent, highly flexible composite membrane with multiple antimicrobial effects used for promoting wound healing.
Carbohydr Polym. 2019 Oct 15;222:114985. doi: 10.1016/j.carbpol.2019.114985. Epub 2019 Jun 10.
10
Exploring K2G30 Genome: A High Bacterial Cellulose Producing Strain in Glucose and Mannitol Based Media.
Front Microbiol. 2019 Jan 30;10:58. doi: 10.3389/fmicb.2019.00058. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验