Fast Lea, Temuulen Uchralt, Villringer Kersten, Kufner Anna, Ali Huma Fatima, Siebert Eberhard, Huo Shufan, Piper Sophie K, Sperber Pia Sophie, Liman Thomas, Endres Matthias, Ritter Kerstin
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany.
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany.
Front Neurol. 2023 Feb 21;14:1114360. doi: 10.3389/fneur.2023.1114360. eCollection 2023.
Accurate prediction of clinical outcomes in individual patients following acute stroke is vital for healthcare providers to optimize treatment strategies and plan further patient care. Here, we use advanced machine learning (ML) techniques to systematically compare the prediction of functional recovery, cognitive function, depression, and mortality of first-ever ischemic stroke patients and to identify the leading prognostic factors.
We predicted clinical outcomes for 307 patients (151 females, 156 males; 68 ± 14 years) from the PROSpective Cohort with Incident Stroke Berlin study using 43 baseline features. Outcomes included modified Rankin Scale (mRS), Barthel Index (BI), Mini-Mental State Examination (MMSE), Modified Telephone Interview for Cognitive Status (TICS-M), Center for Epidemiologic Studies Depression Scale (CES-D) and survival. The ML models included a Support Vector Machine with a linear kernel and a radial basis function kernel as well as a Gradient Boosting Classifier based on repeated 5-fold nested cross-validation. The leading prognostic features were identified using Shapley additive explanations.
The ML models achieved significant prediction performance for mRS at patient discharge and after 1 year, BI and MMSE at patient discharge, TICS-M after 1 and 3 years and CES-D after 1 year. Additionally, we showed that National Institutes of Health Stroke Scale (NIHSS) was the top predictor for most functional recovery outcomes as well as education for cognitive function and depression.
Our machine learning analysis successfully demonstrated the ability to predict clinical outcomes after first-ever ischemic stroke and identified the leading prognostic factors that contribute to this prediction.
准确预测急性中风后个体患者的临床结局,对于医疗服务提供者优化治疗策略和规划进一步的患者护理至关重要。在此,我们使用先进的机器学习(ML)技术,系统地比较首次缺血性中风患者的功能恢复、认知功能、抑郁和死亡率的预测情况,并确定主要的预后因素。
我们使用43个基线特征,对来自柏林中风事件前瞻性队列研究的307例患者(151例女性,156例男性;68±14岁)的临床结局进行预测。结局包括改良Rankin量表(mRS)、Barthel指数(BI)、简易精神状态检查表(MMSE)、改良认知状态电话访谈(TICS-M)、流行病学研究中心抑郁量表(CES-D)和生存率。ML模型包括具有线性核和径向基函数核的支持向量机,以及基于重复5折嵌套交叉验证的梯度提升分类器。使用Shapley加性解释来确定主要的预后特征。
ML模型在患者出院时和1年后对mRS、出院时对BI和MMSE、1年和3年后对TICS-M以及1年后对CES-D均取得了显著的预测性能。此外,我们表明,美国国立卫生研究院卒中量表(NIHSS)是大多数功能恢复结局以及认知功能和抑郁方面教育的首要预测因素。
我们的机器学习分析成功证明了预测首次缺血性中风后临床结局的能力,并确定了有助于这一预测的主要预后因素。