Suppr超能文献

通过循环脉冲神经网络中的动力学进行多任务计算。

Multitask computation through dynamics in recurrent spiking neural networks.

机构信息

Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia.

出版信息

Sci Rep. 2023 Mar 10;13(1):3997. doi: 10.1038/s41598-023-31110-z.

Abstract

In this work, inspired by cognitive neuroscience experiments, we propose recurrent spiking neural networks trained to perform multiple target tasks. These models are designed by considering neurocognitive activity as computational processes through dynamics. Trained by input-output examples, these spiking neural networks are reverse engineered to find the dynamic mechanisms that are fundamental to their performance. We show that considering multitasking and spiking within one system provides insightful ideas on the principles of neural computation.

摘要

在这项工作中,受认知神经科学实验的启发,我们提出了经过训练可以执行多个目标任务的递归尖峰神经网络。这些模型是通过动态将神经认知活动视为计算过程来设计的。通过输入输出示例进行训练,这些尖峰神经网络被反向工程,以找到对其性能至关重要的动态机制。我们表明,在一个系统中同时考虑多任务和尖峰可以为神经计算的原理提供有见地的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2e6/10006454/a1ead7d11310/41598_2023_31110_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验