Suppr超能文献

基于深度学习的 B 型超声图像中总斑块面积的测量。

Deep Learning-Based Measurement of Total Plaque Area in B-Mode Ultrasound Images.

出版信息

IEEE J Biomed Health Inform. 2021 Aug;25(8):2967-2977. doi: 10.1109/JBHI.2021.3060163. Epub 2021 Aug 5.

Abstract

Measurement of total-plaque-area (TPA) is important for determining long term risk for stroke and monitoring carotid plaque progression. Since delineation of carotid plaques is required, a deep learning method can provide automatic plaque segmentations and TPA measurements; however, it requires large datasets and manual annotations for training with unknown performance on new datasets. A UNet++ ensemble algorithm was proposed to segment plaques from 2D carotid ultrasound images, trained on three small datasets (n = 33, 33, 34 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The ensemble was also trained on the entire SPARC dataset and tested with a different dataset (n = 497, Zhongnan Hospital, China). Algorithm and manual segmentations were compared using Dice-similarity-coefficient (DSC), and TPAs were compared using the difference ( ∆TPA), Pearson correlation coefficient (r) and Bland-Altman analyses. Segmentation variability was determined using the intra-class correlation coefficient (ICC) and coefficient-of-variation (CoV). For 44 SPARC subjects, algorithm DSC was 83.3-85.7%, and algorithm TPAs were strongly correlated (r = 0.985-0.988; p < 0.001) with manual results with marginal biases (0.73-6.75) mm using the three training datasets. Algorithm ICC for TPAs (ICC = 0.996) was similar to intra- and inter-observer manual results (ICC = 0.977, 0.995). Algorithm CoV = 6.98% for plaque areas was smaller than the inter-observer manual CoV (7.54%). For the Zhongnan dataset, DSC was 88.6% algorithm and manual TPAs were strongly correlated (r = 0.972, p < 0.001) with ∆TPA = -0.44 ±4.05 mm and ICC = 0.985. The proposed algorithm trained on small datasets and segmented a different dataset without retraining with accuracy and precision that may be useful clinically and for research.

摘要

总斑块面积(TPA)的测量对于确定中风的长期风险和监测颈动脉斑块进展非常重要。由于需要对颈动脉斑块进行描绘,深度学习方法可以提供自动的斑块分割和 TPA 测量;但是,它需要大型数据集和手动注释,并且在新数据集上的性能未知。提出了一种 UNet++ 集成算法,用于从 2D 颈动脉超声图像中分割斑块,该算法在三个小数据集(n=33、33、34 名受试者)上进行了训练,并在 SPARC 数据集的 44 名受试者(n=144、伦敦、加拿大)上进行了测试。该集合还在整个 SPARC 数据集上进行了训练,并在不同的数据集(n=497、Zhongnan 医院,中国)上进行了测试。使用 Dice 相似系数(DSC)比较算法和手动分割,使用差异(∆TPA)、Pearson 相关系数(r)和 Bland-Altman 分析比较 TPA。使用组内相关系数(ICC)和变异系数(CoV)确定分割变异性。对于 44 名 SPARC 受试者,算法的 DSC 为 83.3-85.7%,算法的 TPA 与手动结果高度相关(r=0.985-0.988;p<0.001),具有边缘偏差(0.73-6.75)mm,使用三个训练数据集。TPA 的算法 ICC(ICC=0.996)与内-和观察者手动结果相似(ICC=0.977,0.995)。斑块面积的算法 CoV(CoV=6.98%)小于观察者手动 CoV(7.54%)。对于 Zhongnan 数据集,DSC 为 88.6%,算法和手动 TPA 高度相关(r=0.972,p<0.001),差异(∆TPA)=-0.44±4.05mm,ICC=0.985。该算法在小型数据集上进行训练,无需重新训练即可分割不同的数据集,其准确性和精度在临床上和研究中可能都很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验