Pangaea Data Limited, London, UK.
Pangaea Data Limited, London, UK
BMJ Health Care Inform. 2022 Nov;29(1). doi: 10.1136/bmjhci-2021-100519.
Clinical notes contain information that has not been documented elsewhere, including responses to treatment and clinical findings, which are crucial for predicting key outcomes in patients in acute care. In this study, we propose the automatic annotation of phenotypes from clinical notes as a method to capture essential information to predict outcomes in the intensive care unit (ICU). This information is complementary to typically used vital signs and laboratory test results.
In this study, we developed a novel phenotype annotation model to extract the phenotypical features of patients, which were then used as input features of predictive models to predict ICU patient outcomes. We demonstrated and validated this approach by conducting experiments on three ICU prediction tasks, including in-hospital mortality, physiological decompensation and length of stay (LOS) for over 24 000 patients using the Medical Information Mart for Intensive Care (MIMIC-III) dataset.
The predictive models incorporating phenotypical information achieved 0.845 (area under the curve-receiver operating characteristic (AUC-ROC)) for in-hospital mortality, 0.839 (AUC-ROC) for physiological decompensation and 0.430 (kappa) for LOS, all of which consistently outperformed the baseline models using only vital signs and laboratory test results. Moreover, we conducted a thorough interpretability study showing that phenotypes provide valuable insights at both the patient and cohort levels.
The proposed approach demonstrates that phenotypical information complements traditionally used vital signs and laboratory test results and significantly improves the accuracy of outcome prediction in the ICU.
临床记录包含其他地方未记录的信息,包括对治疗的反应和临床发现,这些对于预测急性护理患者的关键结局至关重要。在这项研究中,我们提出了从临床记录中自动标注表型的方法,以捕获关键信息来预测重症监护病房(ICU)的结局。这些信息是对通常使用的生命体征和实验室检查结果的补充。
在这项研究中,我们开发了一种新的表型标注模型来提取患者的表型特征,然后将其作为预测模型的输入特征,用于预测 ICU 患者的结局。我们通过在三个 ICU 预测任务上进行实验,使用医疗信息监护 ICU(MIMIC-III)数据集对超过 24000 名患者进行了演示和验证,这三个任务包括院内死亡率、生理失代偿和 24 小时以上的住院时间(LOS)。
纳入表型信息的预测模型在院内死亡率方面的预测值为 0.845(曲线下面积-接受者操作特征(AUC-ROC)),在生理失代偿方面的预测值为 0.839(AUC-ROC),在 LOS 方面的预测值为 0.430(kappa),均优于仅使用生命体征和实验室检查结果的基线模型。此外,我们进行了一项彻底的可解释性研究,表明表型在患者和队列水平都提供了有价值的见解。
提出的方法表明,表型信息补充了传统使用的生命体征和实验室检查结果,显著提高了 ICU 结局预测的准确性。