Suppr超能文献

通过带有长短期记忆网络方法的BERTopic从电子健康记录预测重症监护病房再入院情况。

Predicting ICU Readmission from Electronic Health Records via BERTopic with Long Short Term Memory Network Approach.

作者信息

Chiu Chih-Chou, Wu Chung-Min, Chien Te-Nien, Kao Ling-Jing, Li Chengcheng

机构信息

Department of Business Management, National Taipei University of Technology, Taipei 106, Taiwan.

College of Management, National Taipei University of Technology, Taipei 106, Taiwan.

出版信息

J Clin Med. 2024 Sep 18;13(18):5503. doi: 10.3390/jcm13185503.

Abstract

The increasing rate of intensive care unit (ICU) readmissions poses significant challenges in healthcare, impacting both costs and patient outcomes. Predicting patient readmission after discharge is crucial for improving medical quality and reducing expenses. Traditional analyses of electronic health record (EHR) data have primarily focused on numerical data, often neglecting valuable text data. This study employs a hybrid model combining BERTopic and Long Short-Term Memory (LSTM) networks to predict ICU readmissions. Leveraging the MIMIC-III database, we utilize both quantitative and text data to enhance predictive capabilities. Our approach integrates the strengths of unsupervised topic modeling with supervised deep learning, extracting potential topics from patient records and transforming discharge summaries into topic vectors for more interpretable and personalized predictions. Utilizing a comprehensive dataset of 36,232 ICU patient records, our model achieved an AUROC score of 0.80, thereby surpassing the performance of traditional machine learning models. The implementation of BERTopic facilitated effective utilization of unstructured data, generating themes that effectively guide the selection of relevant predictive factors for patient readmission prognosis. This significantly enhanced the model's interpretative accuracy and predictive capability. Additionally, the integration of importance ranking methods into our machine learning framework allowed for an in-depth analysis of the significance of various variables. This approach provided crucial insights into how different input variables interact and impact predictions of patient readmission across various clinical contexts. The practical application of BERTopic technology in our hybrid model contributes to more efficient patient management and serves as a valuable tool for developing tailored treatment strategies and resource optimization. This study highlights the significance of integrating unstructured text data with traditional quantitative data to develop more accurate and interpretable predictive models in healthcare, emphasizing the importance of individualized care and cost-effective healthcare paradigms.

摘要

重症监护病房(ICU)再入院率的不断上升给医疗保健带来了重大挑战,对成本和患者预后均产生影响。预测患者出院后的再入院情况对于提高医疗质量和降低费用至关重要。传统的电子健康记录(EHR)数据分析主要集中在数值数据上,常常忽略了有价值的文本数据。本研究采用了一种结合BERTopic和长短期记忆(LSTM)网络的混合模型来预测ICU再入院情况。利用MIMIC-III数据库,我们同时使用定量和文本数据来增强预测能力。我们的方法将无监督主题建模的优势与有监督的深度学习相结合,从患者记录中提取潜在主题,并将出院小结转换为主题向量,以进行更具可解释性和个性化的预测。利用包含36232份ICU患者记录的综合数据集,我们的模型实现了0.80的曲线下面积(AUROC)得分,从而超越了传统机器学习模型的性能。BERTopic的实施促进了对非结构化数据的有效利用,生成的主题有效地指导了用于患者再入院预后的相关预测因素的选择。这显著提高了模型的解释准确性和预测能力。此外,将重要性排序方法集成到我们的机器学习框架中,可以深入分析各种变量的重要性。这种方法提供了关键的见解,即不同的输入变量如何相互作用以及在各种临床背景下如何影响患者再入院的预测。BERTopic技术在我们的混合模型中的实际应用有助于更高效地管理患者,并作为开发定制治疗策略和资源优化的宝贵工具。本研究强调了将非结构化文本数据与传统定量数据相结合,以在医疗保健中开发更准确和可解释的预测模型的重要性,强调了个性化护理和具有成本效益的医疗保健模式的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bf7/11432694/971922dcdcfb/jcm-13-05503-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验