Suppr超能文献

将个性化代谢头像投入生产:体重预测的深度学习模型与统计模型比较。

Putting the Personalized Metabolic Avatar into Production: A Comparison between Deep-Learning and Statistical Models for Weight Prediction.

机构信息

Neuroscience Department Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.

Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy.

出版信息

Nutrients. 2023 Feb 27;15(5):1199. doi: 10.3390/nu15051199.

Abstract

Nutrition is a cross-cutting sector in medicine, with a huge impact on health, from cardiovascular disease to cancer. Employment of digital medicine in nutrition relies on digital twins: digital replicas of human physiology representing an emergent solution for prevention and treatment of many diseases. In this context, we have already developed a data-driven model of metabolism, called a "Personalized Metabolic Avatar" (PMA), using gated recurrent unit (GRU) neural networks for weight forecasting. However, putting a digital twin into production to make it available for users is a difficult task that as important as model building. Among the principal issues, changes to data sources, models and hyperparameters introduce room for error and overfitting and can lead to abrupt variations in computational time. In this study, we selected the best strategy for deployment in terms of predictive performance and computational time. Several models, such as the Transformer model, recursive neural networks (GRUs and long short-term memory networks) and the statistical SARIMAX model were tested on ten users. PMAs based on GRUs and LSTM showed optimal and stable predictive performances, with the lowest root mean squared errors (0.38 ± 0.16-0.39 ± 0.18) and acceptable computational times of the retraining phase (12.7 ± 1.42 s-13.5 ± 3.60 s) for a production environment. While the Transformer model did not bring a substantial improvement over RNNs in term of predictive performance, it increased the computational time for both forecasting and retraining by 40%. The SARIMAX model showed the worst performance in term of predictive performance, though it had the best computational time. For all the models considered, the extent of the data source was a negligible factor, and a threshold was established for the number of time points needed for a successful prediction.

摘要

营养是医学中的一个跨领域学科,对健康有巨大影响,从心血管疾病到癌症。营养领域的数字医学应用依赖于数字孪生:代表人类生理学的数字复制品,是预防和治疗许多疾病的新兴解决方案。在这种情况下,我们已经使用门控循环单元(GRU)神经网络开发了一种代谢数据驱动模型,称为“个性化代谢化身”(PMA),用于体重预测。然而,将数字孪生投入生产并使其可供用户使用是一项艰巨的任务,与模型构建同样重要。其中主要问题是,数据源、模型和超参数的变化会引入错误和过拟合的空间,并导致计算时间的突然变化。在这项研究中,我们根据预测性能和计算时间选择了最佳的部署策略。我们在十个用户上测试了几种模型,如 Transformer 模型、递归神经网络(GRU 和长短期记忆网络)和统计 SARIMAX 模型。基于 GRU 和 LSTM 的 PMA 显示出最佳和稳定的预测性能,最低均方根误差(0.38 ± 0.16-0.39 ± 0.18)和可接受的重新训练阶段计算时间(12.7 ± 1.42 s-13.5 ± 3.60 s),适用于生产环境。虽然 Transformer 模型在预测性能方面并没有比 RNN 带来实质性的改进,但它增加了预测和重新训练的计算时间 40%。SARIMAX 模型在预测性能方面表现最差,但它的计算时间最短。对于所有考虑的模型,数据源的范围是一个微不足道的因素,并且为成功预测建立了一个时间点数量的阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验