Suppr超能文献

通过将饮食、人体测量和身体活动数据整合到网络应用程序中来实现个性化的能量平衡自我监测。

Personalized Self-Monitoring of Energy Balance through Integration in a Web-Application of Dietary, Anthropometric, and Physical Activity Data.

作者信息

Bianchetti Giada, Abeltino Alessio, Serantoni Cassandra, Ardito Federico, Malta Daniele, De Spirito Marco, Maulucci Giuseppe

机构信息

Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy.

Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.

出版信息

J Pers Med. 2022 Apr 2;12(4):568. doi: 10.3390/jpm12040568.

Abstract

Self-monitoring of weight, diet and physical activity is a valuable component of behavioral weight loss treatment. The validation and user-friendliness of this approach is not optimal since users are selected from homogeneous pools and rely on different applications, increasing the burden and achieving partial, generic and/or unrelated information about their metabolic state. Moreover, studies establishing type, time, duration, and adherence criteria for self-monitoring are lacking. In this study, we developed a digital web-based application (ArmOnIA), which integrates dietary, anthropometric, and physical activity data and provides a personalized estimation of energy balance. Moreover, we determined type, time, duration, and adherence criteria for self-monitoring to achieve significant weight loss in a highly heterogeneous group. A single-arm, uncontrolled prospective study on self-monitored voluntary adults for 7 months was performed. Hierarchical clustering of adherence parameters yielded three behavioral approaches: high (HA), low (LA), and medium (MA) adherence. Average BMI decrease is statistically significant between LA and HA. Moreover, we defined thresholds for the minimum frequencies and duration of dietary and weight self-monitoring. This approach can provide the correct clues to empower citizens with scientific knowledge, augmenting their self-awareness with the aim of achieving long-lasting results when pursuing a healthy lifestyle.

摘要

体重、饮食和身体活动的自我监测是行为减肥治疗的一个重要组成部分。这种方法的有效性和用户友好性并不理想,因为用户是从同质化群体中挑选出来的,且依赖不同的应用程序,这增加了负担,并只能获取有关其代谢状态的部分、一般性和/或不相关信息。此外,缺乏关于自我监测的类型、时间、持续时间和依从标准的研究。在本研究中,我们开发了一个基于网络的数字应用程序(ArmOnIA),它整合了饮食、人体测量和身体活动数据,并提供个性化的能量平衡估计。此外,我们确定了自我监测的类型、时间、持续时间和依从标准,以在高度异质的群体中实现显著的体重减轻。我们对自我监测的自愿参与者进行了一项为期7个月的单臂、非对照前瞻性研究。对依从参数进行层次聚类得出了三种行为方式:高依从性(HA)、低依从性(LA)和中等依从性(MA)。LA和HA之间的平均体重指数下降具有统计学意义。此外,我们还定义了饮食和体重自我监测的最低频率和持续时间的阈值。这种方法可以提供正确的线索,使公民具备科学知识,增强他们的自我意识,以便在追求健康生活方式时取得持久的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11f0/9030228/275802e4b0e1/jpm-12-00568-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验