Radiological Sciences, University of California - Los Angeles, 757 Westwood Plaza, Los Angeles, CA, 90095, USA.
Computer Science, University of California - Los Angeles, Los Angeles, CA, 90095, USA.
Eur Radiol. 2022 Aug;32(8):5688-5699. doi: 10.1007/s00330-022-08625-6. Epub 2022 Mar 3.
To identify which patient with prostate cancer (PCa) could safely avoid extended pelvic lymph node dissection (ePLND) by predicting lymph node invasion (LNI), via a radiomics-based machine learning approach.
An integrative radiomics model (IRM) was proposed to predict LNI, confirmed by the histopathologic examination, integrating radiomics features, extracted from prostatic index lesion regions on MRI images, and clinical features via SVM. The study cohort comprised 244 PCa patients with MRI and followed by radical prostatectomy (RP) and ePLND within 6 months between 2010 and 2019. The proposed IRM was trained in training/validation set and evaluated in an internal independent testing set. The model's performance was measured by area under the curve (AUC), sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). AUCs were compared via Delong test with 95% confidence interval (CI), and the rest measurements were compared via chi-squared test or Fisher's exact test.
Overall, 17 (10.6%) and 14 (16.7%) patients with LNI were included in training/validation set and testing set, respectively. Shape and first-order radiomics features showed usefulness in building the IRM. The proposed IRM achieved an AUC of 0.915 (95% CI: 0.846-0.984) in the testing set, superior to pre-existing nomograms whose AUCs were from 0.698 to 0.724 (p < 0.05).
The proposed IRM could be potentially feasible to predict the risk of having LNI for patients with PCa. With the improved predictability, it could be utilized to assess which patients with PCa could safely avoid ePLND, thus reduce the number of unnecessary ePLND.
• The combination of MRI-based radiomics features with clinical information improved the prediction of lymph node invasion, compared with the model using only radiomics features or clinical features. • With improved prediction performance on predicting lymph node invasion, the number of extended pelvic lymph node dissection (ePLND) could be reduced by the proposed integrative radiomics model (IRM), compared with the existing nomograms.
通过基于放射组学的机器学习方法,构建整合放射组学模型(IRM),识别前列腺癌(PCa)患者中哪些患者可安全避免广泛盆腔淋巴结清扫术(ePLND)。
纳入 2010 年至 2019 年间 244 例接受 MRI 检查并在 6 个月内行根治性前列腺切除术(RP)和 ePLND 的 PCa 患者,构建预测病理检查证实的淋巴结侵犯(LNI)的整合放射组学模型。该模型通过支持向量机(SVM)整合 MRI 图像前列腺指数病变区域提取的放射组学特征和临床特征。在训练/验证集和内部独立测试集中验证了所提出的 IRM。通过曲线下面积(AUC)、敏感性、特异性、阴性预测值(NPV)和阳性预测值(PPV)来衡量模型性能。通过 Delong 检验和 95%置信区间(CI)比较 AUC,通过卡方检验或 Fisher 确切概率法比较其余测量指标。
在训练/验证集和测试集中,LNI 阳性患者分别占 17(10.6%)和 14(16.7%)例。形状和一阶放射组学特征有助于构建 IRM。该模型在测试集中的 AUC 为 0.915(95%CI:0.846-0.984),优于 AUC 为 0.698-0.724 的现有列线图(p<0.05)。
该研究构建的整合放射组学模型可用于预测 PCa 患者 LNI 的风险,有助于评估哪些 PCa 患者可安全避免 ePLND,减少不必要的 ePLND 数量。
与仅使用放射组学特征或临床特征的模型相比,基于 MRI 的放射组学特征与临床信息的组合可提高对淋巴结侵犯的预测。
与现有列线图相比,基于改进的淋巴结侵犯预测性能的整合放射组学模型(IRM)可减少广泛盆腔淋巴结清扫术(ePLND)的数量。