Wang Huan, Li Xinyu, Wang Tianze, Li Jianying, Sun Tianze, Chen Lihong, Cheng Yannan, Jia Xiaoqian, Niu Xinyi, Guo Jianxin
Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Department of Neurosurgery, Xi'an Jiaotong University School of Medicine, Xi'an, China.
Quant Imaging Med Surg. 2023 Mar 1;13(3):1814-1824. doi: 10.21037/qims-22-353. Epub 2022 Nov 30.
Traditional reconstruction techniques have certain limitations in balancing image quality and reducing radiation dose. The deep learning image reconstruction (DLIR) algorithm opens the door to a new era of medical image reconstruction. The purpose of the study was to evaluate the DLIR images at 1.25 mm thickness in balancing image noise and spatial resolution in low-dose abdominal computed tomography (CT) in comparison with the conventional adaptive statistical iterative reconstruction-V at 40% strength (ASIR-V40%) at 5 and 1.25 mm.
This retrospective study included 89 patients who underwent low-dose abdominal CT. Five sets of images were generated using ASIR-V40% at a 5 mm slice thickness and 1.25 mm (high-resolution) with DLIR at 1.25 mm using 3 strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H). Qualitative evaluation was performed for image noise, artifacts, and visualization of small structures, while quantitative evaluation was performed for standard deviation (SD), signal-to-noise ratio (SNR), and spatial resolution (defined as the edge rising slope).
At 1.25 mm, DLIR-M and DLIR-H images had significantly lower noise (SD in fat: 14.29±3.37 and 9.65±3.44 HU, respectively), higher SNR for liver (3.70±0.78 and 5.64±1.20, respectively), and higher overall image quality (4.30±0.44 and 4.67±0.40, respectively) than did the respective values in ASIR-V40% images (20.60±4.04 HU, 2.60±0.63, and 3.77±0.43; all P values <0.05). Compared with the 5 mm ASIR-V40% images, the 1.25 mm DLIR-H images had lower noise (SD: 9.65±3.44 13.63±10.03 HU), higher SNR (5.64±1.20 4.69±1.28), and higher overall image quality scores (4.67±0.40 3.94±0.46) (all P values <0.001). In addition, DLIR-L, DLIR-M, and DLIR-H images had a significantly higher spatial resolution in terms of edge rising slope (59.66±21.46, 58.52±17.48, and 59.26±13.33, respectively, 33.79±9.23) and significantly higher image quality scores in the visualization of fine structures (4.43±0.50, 4.41±0.49, and 4.38±0.49, respectively 2.62±0.49) than did the 5 mm ASIR-V40 images.
The 1.25 mm DLIR-M and DLIR-H images had significantly reduced image noise and improved SNR and overall image quality compared to the 1.25 mm ASIR-V40% images, and they had significantly improved the spatial resolution and visualization of fine structures compared to the 5 mm ASIR-V40% images. DLIR-H images had further reduced image noise compared with the 5 mm ASIR-V40% images, and DLIR-H was the most effective technique at balancing the image noise and spatial resolution in low-dose abdominal CT.
传统重建技术在平衡图像质量和降低辐射剂量方面存在一定局限性。深度学习图像重建(DLIR)算法开启了医学图像重建的新时代。本研究的目的是评估在低剂量腹部计算机断层扫描(CT)中,1.25毫米层厚的DLIR图像在平衡图像噪声和空间分辨率方面的表现,并与5毫米和1.25毫米层厚、强度为40%的传统自适应统计迭代重建-V(ASIR-V40%)图像进行比较。
这项回顾性研究纳入了89例行低剂量腹部CT检查的患者。使用ASIR-V40%在5毫米层厚和1.25毫米(高分辨率)下生成五组图像,同时使用DLIR在1.25毫米层厚下以三种强度生成图像:低强度(DLIR-L)、中等强度(DLIR-M)和高强度(DLIR-H)。对图像噪声、伪影和小结构的可视化进行定性评估,同时对标准差(SD)、信噪比(SNR)和空间分辨率(定义为边缘上升斜率)进行定量评估。
在1.25毫米层厚时,DLIR-M和DLIR-H图像的噪声显著更低(脂肪中的SD分别为14.29±3.37和9.65±3.44 HU),肝脏的SNR更高(分别为3.70±0.78和5.64±1.20),整体图像质量更高(分别为4.30±0.44和4.67±0.40),均优于ASIR-V40%图像的相应值(20.60±4.04 HU、2.60±0.63和3.77±0.43;所有P值<0.05)。与5毫米ASIR-V40%图像相比,1.25毫米DLIR-H图像的噪声更低(SD:9.65±3.44对13.63±10.03 HU),SNR更高(5.64±1.20对4.69±1.28),整体图像质量得分更高(4.67±0.40对3.94±0.46)(所有P值<0.001)。此外,DLIR-L、DLIR-M和DLIR-H图像在边缘上升斜率方面的空间分辨率显著更高(分别为59.66±21.46、58.52±17.48和59.26±13.33,对33.79±9.23),在精细结构可视化方面的图像质量得分也显著更高(分别为4.43±0.50、4.41±0.49和4.38±0.49,对2.62±0.49),均优于5毫米ASIR-V40图像。
与1.25毫米ASIR-V40%图像相比,1.25毫米DLIR-M和DLIR-H图像的图像噪声显著降低,SNR和整体图像质量得到改善;与5毫米ASIR-V40%图像相比,它们在空间分辨率和精细结构可视化方面有显著改善。与5毫米ASIR-V40%图像相比,DLIR-H图像的图像噪声进一步降低,且DLIR-H是平衡低剂量腹部CT图像噪声和空间分辨率最有效的技术。