Suppr超能文献

骨钙素在骨折中的结构作用及其修饰

Structural role of osteocalcin and its modification in bone fracture.

作者信息

Bailey Stacyann, Poundarik Atharva A, Sroga Grazyna E, Vashishth Deepak

机构信息

Department of Biomedical Engineering, Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

出版信息

Appl Phys Rev. 2023 Mar;10(1):011410. doi: 10.1063/5.0102897.

Abstract

Osteocalcin (OC), an abundant non-collagenous protein in bone extracellular matrix, plays a vital role in both its biological and mechanical function. OC undergoes post-translational modification, such as glycation; however, it remains unknown whether glycation of OC affects bone's resistance to fracture. Here, for the first time, we demonstrate the formation of pentosidine, an advanced glycation end-product (AGE) cross-link on mouse OC analyzed by ultra-performance liquid chromatography. Next, we establish that the presence of OC in mouse bone matrix is associated with lower interlamellar separation (distance) and thicker bridges spanning the lamellae, both of which are critical for maintaining bone's structural integrity. Furthermore, to determine the impact of modification of OC by glycation on bone toughness, we glycated bone samples from wild-type (WT) and osteocalcin deficient (Oc) mice, and compared the differences in total fluorescent AGEs and fracture toughness between the glycated and control mouse bones and the WT glycated and control mouse bones. We determined that glycation resulted in significantly higher AGEs in WT compared to mouse bones (delta-WT > delta-OC, p = 0.025). This observed change corresponded to a significant decrease in fracture toughness between WT and mice (delta-WT vs delta-OC, p = 0.018). Thus, we propose a molecular deformation and fracture mechanics model that corroborates our experimental findings and provides evidence to support a 37%-90% loss in energy dissipation of OC due to formation of pentosidine cross-link by glycation. We anticipate that our study will aid in elucidating the effects of a major non-collagenous bone matrix protein, osteocalcin, and its modifications on bone fragility and help identify potential therapeutic targets for maintaining skeletal health.

摘要

骨钙素(OC)是骨细胞外基质中一种丰富的非胶原蛋白,在其生物学和力学功能中都起着至关重要的作用。OC会经历翻译后修饰,如糖基化;然而,OC的糖基化是否会影响骨骼的抗骨折能力仍不清楚。在这里,我们首次通过超高效液相色谱法证明了在小鼠OC上形成了戊糖苷,这是一种晚期糖基化终产物(AGE)交联物。接下来,我们确定小鼠骨基质中OC的存在与较低的层间分离(距离)和横跨薄片的较厚桥接有关,这两者对于维持骨骼的结构完整性都至关重要。此外,为了确定OC糖基化修饰对骨韧性的影响,我们对野生型(WT)和骨钙素缺陷型(Oc)小鼠的骨样本进行了糖基化处理,并比较了糖基化小鼠骨与对照小鼠骨以及WT糖基化小鼠骨与对照小鼠骨之间总荧光AGEs和断裂韧性的差异。我们确定,与小鼠骨相比,WT小鼠糖基化后AGEs显著更高(Δ-WT>Δ-OC,p = 0.025)。这一观察到的变化对应于WT和小鼠之间断裂韧性的显著降低(Δ-WT与Δ-OC相比,p = 0.018)。因此,我们提出了一个分子变形和断裂力学模型,该模型证实了我们的实验结果,并提供证据支持由于糖基化形成戊糖苷交联而导致OC能量耗散损失37%-90%。我们预计我们的研究将有助于阐明一种主要的非胶原蛋白骨基质蛋白骨钙素及其修饰对骨脆性的影响,并有助于确定维持骨骼健康的潜在治疗靶点。

相似文献

1
Structural role of osteocalcin and its modification in bone fracture.
Appl Phys Rev. 2023 Mar;10(1):011410. doi: 10.1063/5.0102897.
2
A direct role of collagen glycation in bone fracture.
J Mech Behav Biomed Mater. 2015 Dec;52:120-130. doi: 10.1016/j.jmbbm.2015.08.012. Epub 2015 Aug 15.
3
Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones.
J Mech Behav Biomed Mater. 2009 Aug;2(4):348-54. doi: 10.1016/j.jmbbm.2008.10.010. Epub 2008 Nov 13.
4
Low osteocalcin/collagen type I bone gene expression ratio is associated with hip fragility fractures.
Bone. 2012 Dec;51(6):981-9. doi: 10.1016/j.bone.2012.08.129. Epub 2012 Sep 5.
5
Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone.
Osteoporos Int. 2013 Sep;24(9):2441-7. doi: 10.1007/s00198-013-2319-4. Epub 2013 Mar 8.
6
Osteocalcin and osteopontin influence bone morphology and mechanical properties.
Ann N Y Acad Sci. 2017 Dec;1409(1):79-84. doi: 10.1111/nyas.13470. Epub 2017 Oct 16.
7
Dilatational band formation in bone.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19178-83. doi: 10.1073/pnas.1201513109. Epub 2012 Nov 5.
8
Relation of the protein glycation, oxidation and nitration to the osteocalcin level in obese subjects.
Acta Biochim Pol. 2017;64(3):415-422. doi: 10.18388/abp.2017_1627. Epub 2017 Jul 28.
10
Structural role of osteocalcin and osteopontin in energy dissipation in bone.
J Biomech. 2018 Oct 26;80:45-52. doi: 10.1016/j.jbiomech.2018.08.014. Epub 2018 Aug 28.

引用本文的文献

3
The Interplay of Angiogenesis and Osteogenesis in Non-Stabilized Incomplete Tibial Fractures: A Temporal Study in Rats.
J Orthop Res. 2025 Sep;43(9):1632-1646. doi: 10.1002/jor.70006. Epub 2025 Jun 20.
5
In vivo glycation-interplay between oxidant and carbonyl stress in bone.
JBMR Plus. 2024 Aug 8;8(11):ziae110. doi: 10.1093/jbmrpl/ziae110. eCollection 2024 Nov.
6
Roles of osteocalcin in the central nervous system.
CNS Neurosci Ther. 2024 Sep;30(9):e70016. doi: 10.1111/cns.70016.
7
Multiscale and multidisciplinary analysis of aging processes in bone.
NPJ Aging. 2024 Jun 15;10(1):28. doi: 10.1038/s41514-024-00156-2.
8
Roles of vitamin K‑dependent protein in biomineralization (Review).
Int J Mol Med. 2024 Jan;53(1). doi: 10.3892/ijmm.2023.5330. Epub 2023 Nov 24.
9
Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems.
ACS Biomater Sci Eng. 2023 Sep 11;9(9):5222-5254. doi: 10.1021/acsbiomaterials.3c00609. Epub 2023 Aug 16.
10
Advanced glycation and glycoxidation end products in bone.
Bone. 2023 Nov;176:116880. doi: 10.1016/j.bone.2023.116880. Epub 2023 Aug 12.

本文引用的文献

1
Controlled Formation of Carboxymethyllysine in Bone Matrix through Designed Glycation Reaction.
JBMR Plus. 2021 Oct 19;5(11):e10548. doi: 10.1002/jbm4.10548. eCollection 2021 Nov.
2
The structural role of osteocalcin in bone biomechanics and its alteration in Type-2 Diabetes.
Sci Rep. 2020 Oct 14;10(1):17321. doi: 10.1038/s41598-020-73141-w.
4
Structural role of osteocalcin and osteopontin in energy dissipation in bone.
J Biomech. 2018 Oct 26;80:45-52. doi: 10.1016/j.jbiomech.2018.08.014. Epub 2018 Aug 28.
6
Bone toughening through stress-induced non-collagenous protein denaturation.
Biomech Model Mechanobiol. 2018 Aug;17(4):1093-1106. doi: 10.1007/s10237-018-1016-9. Epub 2018 Apr 16.
7
Biomolecular regulation, composition and nanoarchitecture of bone mineral.
Sci Rep. 2018 Jan 19;8(1):1191. doi: 10.1038/s41598-018-19253-w.
8
Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix.
Acta Biomater. 2017 Sep 15;60:302-314. doi: 10.1016/j.actbio.2017.07.030. Epub 2017 Jul 25.
9
UPDATE ON THE BIOLOGY OF OSTEOCALCIN.
Endocr Pract. 2017 Oct;23(10):1270-1274. doi: 10.4158/EP171966.RA. Epub 2017 Jul 13.
10
Identification and characterization of glycation adducts on osteocalcin.
Anal Biochem. 2017 May 15;525:46-53. doi: 10.1016/j.ab.2017.02.011. Epub 2017 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验