Department of Immunology, Immunology Department of Hebei Medical University, Shijiazhuang, People's Republic of China.
Department of Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.
Inflammation. 2023 Aug;46(4):1236-1254. doi: 10.1007/s10753-023-01803-8. Epub 2023 Mar 15.
Sepsis is a disease with a very high mortality rate, mainly involving an immune-dysregulated response due to bacterial infection. Most studies are currently limited to the whole blood transcriptome level; however, at the single cell level, there is still a great deal unknown about specific cell subsets and disease markers. We obtained 29 peripheral blood single-cell sequencing data, including 66,283 cells from 10 confirmed samples of sepsis infection and 19 healthy samples. Cells related to the sepsis phenotype were identified and characterized by the "scissor" method. The regulatory relationships of sepsis-related phenotype cells in the cellular communication network were clarified using the "cell chat" method. The least absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and random forest (RF) were used to identify sepsis signature genes of diagnostic value. External validation was performed using multiple datasets from the GEO database (GSE28750, GSE185263, GSE57065) and 40 clinical samples. Bayesian algorithm was used to calculate the regulatory network of LILRA5 co-expressed genes. The stability of atenolol-targeting LILRA5 was determined by molecular docking techniques. Ultimately, action trajectory and survival analyses demonstrate the effectiveness of atenolol-targeted LILRA5 in treating patients with sepsis. We successfully identified 1215 healthy phenotypic cells and 462 sepsis phenotypic cells. We focused on 447 monocytes of the sepsis phenotype. Among the cellular communications, there were a large number of differences between these cells and other immune cells showing a significant inflammatory phenotype compared to the healthy phenotypic cells. Together, the three machine learning algorithms identified the LILRA5 marker gene in sepsis patients, and validation results from multiple external datasets as well as real-world clinical samples demonstrated the robust diagnostic performance of LILRA5. The AUC values of LILRA5 in the external datasets GSE28750, GSE185263, and GSE57065 could reach 0.875, 0.940, and 0.980, in that order. Bayesian networks identified a large number of unknown regulatory relationships for LILRA5 co-expression. Molecular docking results demonstrated the possibility of atenolol targeting LILRA5 for the treatment of sepsis. Behavioral trajectory analysis and survival analysis demonstrate that atenolol has a desirable therapeutic effect. LILRA5 is a marker gene in sepsis patients, and atenolol can stably target LILRA5.
脓毒症是一种死亡率非常高的疾病,主要涉及由于细菌感染引起的免疫失调反应。目前大多数研究仅限于全血转录组水平;然而,在单细胞水平上,对于特定的细胞亚群和疾病标志物仍有许多未知之处。我们获得了 29 份外周血单细胞测序数据,包括 10 份确诊的脓毒症感染样本和 19 份健康样本中的 66283 个细胞。使用“scissor”方法鉴定和描述与脓毒症表型相关的细胞。使用“cell chat”方法阐明脓毒症相关表型细胞在细胞通讯网络中的调控关系。使用最小绝对收缩和选择算子(LASSO)、支持向量机(SVM)和随机森林(RF)识别具有诊断价值的脓毒症特征基因。使用来自 GEO 数据库(GSE28750、GSE185263、GSE57065)的多个数据集和 40 个临床样本进行外部验证。使用贝叶斯算法计算 LILRA5 共表达基因的调控网络。通过分子对接技术确定了阿替洛尔靶向 LILRA5 的稳定性。最终,行动轨迹和生存分析证明了阿替洛尔靶向 LILRA5 治疗脓毒症患者的有效性。我们成功鉴定了 1215 个健康表型细胞和 462 个脓毒症表型细胞。我们关注的是脓毒症表型的 447 个单核细胞。在细胞通讯中,这些细胞与其他免疫细胞之间存在大量差异,与健康表型细胞相比,它们表现出明显的炎症表型。三种机器学习算法共同确定了脓毒症患者的 LILRA5 标记基因,来自多个外部数据集和真实世界临床样本的验证结果证明了 LILRA5 的稳健诊断性能。LILRA5 在外部数据集 GSE28750、GSE185263 和 GSE57065 中的 AUC 值分别可达到 0.875、0.940 和 0.980。贝叶斯网络确定了大量 LILRA5 共表达的未知调控关系。分子对接结果表明,阿替洛尔靶向 LILRA5 治疗脓毒症具有可能性。行为轨迹分析和生存分析表明,阿替洛尔具有良好的治疗效果。LILRA5 是脓毒症患者的标记基因,阿替洛尔可以稳定地靶向 LILRA5。