Suppr超能文献

利用Transformer和机器学习方法鉴定脓毒症相关性急性肾损伤中的关键基因和潜在治疗靶点

Identification of Key Genes and Potential Therapeutic Targets in Sepsis-Associated Acute Kidney Injury Using Transformer and Machine Learning Approaches.

作者信息

Zhai Zhendong, Peng JunZhe, Zhong Wenjun, Tao Jun, Ao Yaqi, Niu Bailin, Zhu Li

机构信息

School of Information Engineering, Nanchang University, Nanchang 330031, China.

School of Medicine, Chongqing University, Chongqing 400016, China.

出版信息

Bioengineering (Basel). 2025 May 16;12(5):536. doi: 10.3390/bioengineering12050536.

Abstract

Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening complication of sepsis, characterized by high mortality and prolonged hospitalization. Early diagnosis and effective therapy remain difficult despite extensive investigation. To address this, we developed an AI-driven integrative framework that combines a Transformer-based deep learning model with established machine learning techniques (LASSO, SVM-RFE, Random Forest and neural networks) to uncover complex, nonlinear interactions among gene-expression biomarkers. Analysis of normalized microarray data from GEO (GSE95233 and GSE69063) identified differentially expressed genes (DEGs), and KEGG/GO enrichment via clusterProfiler revealed key pathways in immune response, protein synthesis, and antigen presentation. By integrating multiple transcriptomic cohorts, we pinpointed 617 SA-AKI-associated DEGs-21 of which overlapped between sepsis and AKI datasets. Our Transformer-based classifier ranked five genes (, , , and ) as top diagnostic markers, with AUC values ranging from 0.9395 to 0.9996 (MYL12B yielding 0.9996). Drug-gene interaction mining using DGIdb (FDR < 0.05) nominated 19 candidate therapeutics for SA-AKI. Together, these findings demonstrate that melding deep learning with classical machine learning not only sharpens early SA-AKI detection but also systematically uncovers actionable drug targets, laying groundwork for precision intervention in critical care settings.

摘要

脓毒症相关急性肾损伤(SA - AKI)是脓毒症一种危及生命的并发症,其特点是死亡率高和住院时间延长。尽管进行了广泛研究,但早期诊断和有效治疗仍然困难。为了解决这个问题,我们开发了一个由人工智能驱动的综合框架,该框架将基于Transformer的深度学习模型与成熟的机器学习技术(LASSO、支持向量机递归特征消除法、随机森林和神经网络)相结合,以揭示基因表达生物标志物之间复杂的非线性相互作用。对来自GEO(GSE95233和GSE69063)的标准化微阵列数据进行分析,确定了差异表达基因(DEGs),通过clusterProfiler进行的KEGG/GO富集分析揭示了免疫反应、蛋白质合成和抗原呈递中的关键途径。通过整合多个转录组队列,我们确定了617个与SA - AKI相关的DEGs,其中21个在脓毒症和急性肾损伤数据集中重叠。我们基于Transformer的分类器将五个基因(、、、和)列为顶级诊断标志物,AUC值范围为0.9395至0.9996(MYL12B的AUC值为0.9996)。使用DGIdb进行药物 - 基因相互作用挖掘(FDR < 0.05),为SA - AKI提名了19种候选治疗药物。总之,这些发现表明,将深度学习与经典机器学习相结合,不仅能提高SA - AKI的早期检测能力,还能系统地揭示可操作的药物靶点,为重症监护环境中的精准干预奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a94/12108565/4646b87b7adb/bioengineering-12-00536-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验