Suppr超能文献

基于神经网络的乳腺癌术中快速冷冻切片组织学图像分类。

Neural Network Based Classification of Breast Cancer Histopathological Image from Intraoperative Rapid Frozen Sections.

机构信息

Department of Pathology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.

The Institute of Technological Sciences, Wuhan University, 430074, Wuhan, China.

出版信息

J Digit Imaging. 2023 Aug;36(4):1597-1607. doi: 10.1007/s10278-023-00802-3. Epub 2023 Mar 17.

Abstract

Breast cancer is the leading cause of cancer-related mortality in women worldwide. Despite the rapid developments in diagnostic techniques and medical sciences, pathologic diagnosis is still recognized as the gold standard for disease diagnose. Pathologic diagnosis is a time-consuming task performed for pathologists, needing profound professional knowledge and long-term accumulated diagnostic experience. Therefore, the development of automatic and precise histopathological image classification is essential for medical diagnosis. In this study, an improved VGG network was used to classify the breast cancer histopathological image from intraoperative rapid frozen sections. We adopt a transformed loss function by adding a penalty to cross-entropy in our training stage, which improved the accuracy on test data by 4.39%. Laplacian-4 was used for the enhancement of images, which contributes to the improvement of the accuracy. The accuracy of the proposed model on training data and test data reached 88.70% and 82.27%, respectively, which outperforms the original model by 9.39% of accuracy in test data. The process time was less than 0.25 s per image on average. Meanwhile, the heat maps of predictions were given to show the evidential regions in histopathological images, which could drive improvements in the accuracy, speed, and clinical value of pathological diagnoses. In addition to helping with the actual diagnosis, this technology may be a benefit to pathologists, surgeons, and patients. It might prove to be a helpful tool for pathologists in the future.

摘要

乳腺癌是全球女性癌症相关死亡的主要原因。尽管诊断技术和医学科学取得了快速发展,但病理诊断仍被认为是疾病诊断的金标准。病理诊断是病理学家进行的一项耗时的任务,需要深厚的专业知识和长期积累的诊断经验。因此,开发自动和精确的组织病理学图像分类对于医学诊断至关重要。在这项研究中,我们使用改进的 VGG 网络对术中快速冷冻切片的乳腺癌组织病理学图像进行分类。在训练阶段,我们采用了一种通过在交叉熵中添加惩罚项而转换的损失函数,从而将测试数据的准确率提高了 4.39%。采用拉普拉斯-4 对图像进行增强,有助于提高准确率。所提出的模型在训练数据和测试数据上的准确率分别达到 88.70%和 82.27%,在测试数据上的准确率比原始模型提高了 9.39%。平均每张图像的处理时间不到 0.25 秒。同时,给出了预测的热图,以显示组织病理学图像中的证据区域,这有助于提高病理诊断的准确性、速度和临床价值。除了有助于实际诊断外,这项技术还可能对病理学家、外科医生和患者有益。它可能被证明是未来病理学家的有用工具。

相似文献

7
Label-Efficient Breast Cancer Histopathological Image Classification.基于标签的乳腺癌组织病理图像分类
IEEE J Biomed Health Inform. 2019 Sep;23(5):2108-2116. doi: 10.1109/JBHI.2018.2885134. Epub 2018 Dec 5.

本文引用的文献

9
A fast filtering algorithm for image enhancement.一种用于图像增强的快速滤波算法。
IEEE Trans Med Imaging. 1994;13(3):557-64. doi: 10.1109/42.310887.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验