Suppr超能文献

AIGAN:用于低剂量CT和低剂量PET图像重建的注意力编码集成生成对抗网络。

AIGAN: Attention-encoding Integrated Generative Adversarial Network for the reconstruction of low-dose CT and low-dose PET images.

作者信息

Fu Yu, Dong Shunjie, Niu Meng, Xue Le, Guo Hanning, Huang Yanyan, Xu Yuanfan, Yu Tianbai, Shi Kuangyu, Yang Qianqian, Shi Yiyu, Zhang Hong, Tian Mei, Zhuo Cheng

机构信息

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China; Binjiang Institute, Zhejiang University, Hangzhou, China.

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China.

出版信息

Med Image Anal. 2023 May;86:102787. doi: 10.1016/j.media.2023.102787. Epub 2023 Feb 28.

Abstract

X-ray computed tomography (CT) and positron emission tomography (PET) are two of the most commonly used medical imaging technologies for the evaluation of many diseases. Full-dose imaging for CT and PET ensures the image quality but usually raises concerns about the potential health risks of radiation exposure. The contradiction between reducing the radiation exposure and remaining diagnostic performance can be addressed effectively by reconstructing the low-dose CT (L-CT) and low-dose PET (L-PET) images to the same high-quality ones as full-dose (F-CT and F-PET). In this paper, we propose an Attention-encoding Integrated Generative Adversarial Network (AIGAN) to achieve efficient and universal full-dose reconstruction for L-CT and L-PET images. AIGAN consists of three modules: the cascade generator, the dual-scale discriminator and the multi-scale spatial fusion module (MSFM). A sequence of consecutive L-CT (L-PET) slices is first fed into the cascade generator that integrates with a generation-encoding-generation pipeline. The generator plays the zero-sum game with the dual-scale discriminator for two stages: the coarse and fine stages. In both stages, the generator generates the estimated F-CT (F-PET) images as like the original F-CT (F-PET) images as possible. After the fine stage, the estimated fine full-dose images are then fed into the MSFM, which fully explores the inter- and intra-slice structural information, to output the final generated full-dose images. Experimental results show that the proposed AIGAN achieves the state-of-the-art performances on commonly used metrics and satisfies the reconstruction needs for clinical standards.

摘要

X射线计算机断层扫描(CT)和正电子发射断层扫描(PET)是评估多种疾病时最常用的两种医学成像技术。CT和PET的全剂量成像可确保图像质量,但通常会引发对辐射暴露潜在健康风险的担忧。通过将低剂量CT(L-CT)和低剂量PET(L-PET)图像重建为与全剂量(F-CT和F-PET)相同的高质量图像,可以有效解决减少辐射暴露与保持诊断性能之间的矛盾。在本文中,我们提出了一种注意力编码集成生成对抗网络(AIGAN),以实现对L-CT和L-PET图像的高效通用全剂量重建。AIGAN由三个模块组成:级联生成器、双尺度鉴别器和多尺度空间融合模块(MSFM)。首先将一系列连续的L-CT(L-PET)切片输入到级联生成器中,该生成器与生成-编码-生成管道集成。生成器与双尺度鉴别器在两个阶段进行零和博弈:粗粒度阶段和细粒度阶段。在这两个阶段中,生成器尽可能生成与原始F-CT(F-PET)图像相似的估计F-CT(F-PET)图像。在细粒度阶段之后,将估计的精细全剂量图像输入到MSFM中,该模块充分探索切片间和切片内的结构信息,以输出最终生成的全剂量图像。实验结果表明,所提出的AIGAN在常用指标上达到了当前的最佳性能,并满足了临床标准的重建需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验